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During the last decade, a host of epigenetic mechanisms were found to contribute to cancer
and other human diseases. Several genomic studies have revealed that �20% of malignan-
cies have alterations of the subunits of polymorphic BRG-/BRM-associated factor (BAF) and
Polybromo-associated BAF (PBAF) complexes, making them among the most frequently
mutated complexes in cancer. Recurrent mutations arise in genes encoding several BAF/
PBAF subunits, including ARID1A, ARID2, PBRM1, SMARCA4, and SMARCB1. These sub-
units share some degree of conservation with subunits from related adenosine triphosphate
(ATP)-dependent chromatin remodeling complexes in model organisms, in which a large
body of work provides insight into their roles in cancer. Here, we review the roles of BAF- and
PBAF-like complexes in these organisms, and relate these findings to recent discoveries in
cancer epigenomics. We review several roles of BAFand PBAF complexes in cancer, includ-
ing transcriptional regulation, DNA repair, and regulation of chromatin architecture and
topology. More recent results highlight the need for new techniques to study these complexes.

EPIGENOMICS IN CANCER

Broadly defined, epigenetic factors contrib-
ute to the expression state of the genome

by regulating heritable changes in gene ex-
pression independently of the DNA sequence.
Chromatin-based epigenetic regulation occurs
through a wide variety of mechanisms, includ-
ing physical compaction and exclusion, recruit-
ment of transcription machinery, or covalent
modification of DNA and histones. Such fea-
tures constitute the heritable physicochemical
state of the genetic material, and are jointly re-
ferred to as the epigenetic landscape. The com-
binatorial regulation of these features represents

the full spectrum of achievable cell-type diver-
sity for the organism. Because epigenetic regu-
lation contributes to cell-type functional spe-
cialization, it is essential for multicellular life.

An important component of the epigenetic
state is the regulation provided by adenosine
triphosphate (ATP)-dependent chromatin re-
modelers, which use ATP to physically remod-
el histones and other factors on chromatin.
As we review below, genomic studies of pri-
mary tumors and cancer cell lines have revealed
that ATP-dependent chromatin remodelers are
among the most frequently disrupted genes
in cancer. Because several important compo-
nents of ATP-dependent chromatin remodelers
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are conserved between yeast, flies, and humans
(Fig. 1), the basic research on chromatin re-
modeling performed in model organisms is
taking on new relevance for disease biology. In
many cases, fundamental observations from
yeast and flies directly support our understand-
ing of the role of chromatin remodelers in can-
cer; in other cases, the differences between these
organisms and humans highlight important
gaps in our knowledge of disease mechanisms.

In this review, we focus on the family of
BRG-/BRM-associated factor ([BAF] or mSWI/
SNF) and Polybromo-associated BAF (PBAF)
complexes, whose subunits have been identified
as major tumor suppressors in several malig-
nancies (Davoli et al. 2013; Kadoch et al. 2013;
Shain and Pollack 2013). Here, we relate the
fundamental biology revealed by genetics, struc-
tural biology, and microscopy to the fast-mov-
ing field of cancer epigenomics. As we discuss
below, the mechanisms revealed by fundamen-
tal studies inform our understanding of how
epigenetic dysfunction contributes to cancer.

SWI/SNF AND RSC IN Saccharomyces
cerevisiae

The SWI/SNF Complex

ATP-dependent chromatin remodelers were in-
dependently discovered in yeast, by screening
for mutations that disrupt the ability of yeast
to switch mating type (Stern et al. 1984) or
activate sucrose fermentation pathways (Carl-
son et al. 1981; Neigeborn and Carlson 1984,
1987), both in response to extrinsic cues. Later
work showed that many of these genes act in
concert through a common complex that regu-
lated transcription, termed SWI/SNF to honor
both discoveries (Peterson and Herskowitz
1992; Winston and Carlson 1992; Cairns et al.
1994; Peterson et al. 1994). The observation that
histone mutants were able to reverse the pheno-
typic defects associated with SWI/SNF muta-
tion (Sternberg et al. 1987; Kruger et al. 1995)
indicated that regulation of chromatin struc-
ture was the central function of the SWI/SNF
complex. In vitro, ATP-dependent remodeling
activity induces changes of position, phasing,

stability, or histone content of nucleosomes,
and is well described in other reviews (Becker
and Horz 2002; Narlikar et al. 2013). However,
as we discuss below, SWI/SNF-like complexes
have rich and biologically diverse regulatory
roles in vivo that arise through mechanisms
that are not entirely clear.

In yeast, SWI/SNF is a �1.15-MDa pro-
tein complex (Smith et al. 2003) composed of
Swi1, Snf2, Swi3, Snf5, Snf6, along with Swp-
and actin-related proteins (ARPs) (Fig. 1). Most
subunits of the complex, including the ATPase
Snf2, are present as single copies in the complex,
whereas several others integrate in multiple cop-
ies (two copies of Swi3, Swp82, Snf6, and Snf11,
and three copies of Swp29) (Smith et al. 2003).
Many of these subunits are required for the
complex’s biological activity and, in some cases,
its biochemical stability (Estruch and Carlson
1990; Richmond and Peterson 1996). The com-
plex’s direct interaction with nucleosomal DNA
is mediated by the catalytic subunit Snf2, where-
as other subunits, such as Snf5, do not interact
with nucleosomal DNA but instead contact the
histone octamer (Dechassa et al. 2008).

Cells with SWI/SNF subunit mutations
have disrupted chromatin structures, and fail
to express many genes, leading to diverse phe-
notypic defects. As a result, several aspects of the
complex’s biological activity are illustrated by
genetic deletion of its subunits.

Failure to activate gene expression affects
several downstream processes. As an example,
cells lacking the central ATPase Snf2 are viable
but have impaired mating-type switching
because of the inability to express the HO en-
donuclease needed for the process. Proper ex-
pression of HO depends not only on Snf2, but
also Snf1 and Swi3 (Stern et al. 1984). In addi-
tion to the effects on sucrose metabolism, snf2D
cells also have impaired sporulation. However,
SWI/SNF activity is not uniformly activating.
Although Snf2 plays a role in activation of many
genes, it also is required for silencing of genes
at rDNA and telomeric loci, either by direct or
indirect means (Dror and Winston 2004; Man-
ning and Peterson 2014).

SWI/SNF subunits also have important
functions in maintaining proper chromatin-
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Figure 1. Homology between BAF and PBAF-like remodelers throughout evolution. (A) BAF and PBAF com-
plexes in mammals share several features with Brahma-associated proteins (BAPs) and Polybromo-associated
BAP (PBAP) complexes (Drosophila melanogaster), and SWI/SNF and RSC complexes (Saccharomyces cerevi-
siae), respectively. The similarities and differences between these complexes throughout evolution provide
insight into their biological regulation and their roles in cancer. BAF/PBAF subunits labeled in a boldface white
font have important roles in malignancy. Time since species divergence was estimated using TimeTree (Hedges
et al. 2006), and plotted as a function of time, millions of years ago (Mya). (B) Summary of BAF and PBAF
subunits and alternative names used in the text. In some cases, abbreviated names rather than the official human
genome organization (HUGO) symbols are used in the text because of space constraints.
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modification domains. In a reporter strain that
lacks a native transfer RNA (tRNA) insulator
element, nucleosomes occupy a region from
which they are normally depleted, leading to
loss of insulator function (Oki et al. 2004). In
this system, artificial recruitment of Snf5 or
Snf6 restores the nucleosome-depleted region
over which heterochromatin marks cannot
spread, thereby rescuing barrier function.

SWI/SNF mutations also cause increased
sensitivity to DNA-damaging agents, including
hydroxyurea, cisplatin, methyl methanesulfo-
nate, and ultraviolet (UV) light (Birrell et al.
2001; Chai et al. 2005; Xia et al. 2007). These
defects may arise because SWI/SNF subunits
have roles in nucleotide excision repair (Gong
et al. 2006) and DNA double-strand break
(DSB) repair through the homologous recom-
bination (HR) pathway (Chai et al. 2005). SWI/
SNF defective cells also show increased sensitiv-
ity to the topoisomerase II inhibitor daunoru-
bicin (Xia et al. 2007).

Because transcription, DNA repair, and
chromatin modification domains are each in-
fluenced by the availability of accessible DNA,
disruption of the nucleosome mobilization ac-
tivity of SWI/SNF has distinct and pleiotropic
effects.

The RSC Complex

In budding yeast, STH1 codes for the ATPase
subunit of the RSC complex, which also has
the capacity to remodel the structure of chro-
matin. In addition to Sth1, whose ATPase do-
main is functionally interchangeable with Snf2
(Laurent et al. 1993), the RSC complex also has
Rsc4, Rsc6, Rsc8, Rsc9, Sfh1, and several other
dedicated subunits (Fig. 1). In budding yeast,
there are two distinct RSC complexes, contain-
ing either of the two paralogs Rsc1 or Rsc2 that
arose from gene duplication. Both subunits
along with Rsc4 contain bromodomains, which
interact with acetylated lysines. RSC complexes
are �10-fold more abundant that SWI/SNF
(Cairns et al. 1996, 1999), which may explain
why RSC complexes are essential but SWI/SNF
is not. Electron microscopic (EM) reconstruc-
tions of the yeast RSC complex show a lobed

�1.3-MDa structure of similar scale to the
SWI/SNF complex (Asturias et al. 2002;
Leschziner et al. 2007; Chaban et al. 2008).

RSC remodels nucleosomes throughout
the genome, regulating the positions and den-
sities of histones near the promoters of genes
transcribed by RNA polymerase II (Pol II), as
well as genes transcribed by Pol III (Parnell et al.
2008; Hartley and Madhani 2009), and its ac-
tivity affects the transcription state of both clas-
ses of genes.

Rsc2 is required for insulator boundary
function at the HMR locus, and its mutation
leads to a loss of the nucleosome-depleted re-
gion encompassed by the insulator (Dhillon
et al. 2009). Additionally, loss of Rsc2 impairs
HR and nonhomologous end joining (NHEJ),
the two DSB-repair pathways, along with repair
of DNA damaged by UV light (Chai et al. 2005;
Shim et al. 2005; Srivas et al. 2013). Rsc2 is
present at kinetochores and is required for
proper sister chromosome cohesion and chro-
mosome segregation (Hsu et al. 2003; Baetz et
al. 2004), as well as maintenance of telomeres
(Askree et al. 2004).

Brahma-Associated Protein (BAP)
AND Polybromo-Associated BAP (PBAP)
IN Drosophila melanogaster

The BAP Complex

Complexes similar to yeast SWI/SNF were dis-
covered in Drosophila based on their ability to
oppose Polycomb repressive activity (Kennison
and Tamkun 1988; Tamkun et al. 1992). The
central ATPase of this complex is the gene prod-
uct of brahma (brm), giving rise to the name
BAP complex. The BAP complex is defined as
containing OSA and lacking BAP170, SAYP, and
POLYBROMO (Fig. 1) (Mohrmann et al. 2004;
Bouazoune and Brehm 2006; Chalkley et al.
2008).

In flies, the activating Trithorax group genes
generally oppose the repressive activity of Poly-
comb group genes. Misregulation of develop-
mental genes results in aberrant morphologies
and ectopic locations of body parts. Proteins
encoded by brahma, osa, and moira (mor) are
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members of the Trithorax group, a set of factors
that oppose the repressive activity of Polycomb-
group proteins (Kennison and Tamkun 1988;
Tamkun et al. 1992; Papoulas et al. 1998; Collins
et al. 1999; Crosby et al. 1999; Kal et al. 2000;
Simon and Tamkun 2002; Kingston and Tam-
kun 2014).

Although Polycomb genes are conserved in
animals, plants, and some fungi (Shaver et al.
2010), unicellular model yeasts lack Polycomb,
suggesting that multicellular organisms have
greater needs for repressive factors (as well as
their regulators) for lineage-specific functions
during development. As discussed below, failure
to oppose Polycomb repressive activity in mam-
mals plays an important role in malignancy.
Nevertheless, despite this important regulatory
role (likely present in the last common eukary-
otic ancestor), the precise mechanisms of Poly-
comb opposition remain murky.

The PBAP Complex

Drosophila have a second BRM-containing
complex, named PBAP. The subunit composi-
tions of the BAP and PBAP complexes bear sim-
ilarities to the functional specialization between
SWI/SNF and RSC in yeast. PBAP complexes
lack OSA and instead contain BAP170, SAYP,
and POLYBROMO (Mohrmann et al. 2004;
Bouazoune and Brehm 2006; Chalkley et al.
2008). Interestingly, BAP and PBAP subunits
both genetically oppose Polycomb-mediated si-
lencing, without regard to whether they are
common to BAP and PBAP, or exclusive to one
of the complexes (Kennison and Tamkun 1988;
Tamkun et al. 1992; Papoulas et al. 1998; Collins
et al. 1999; Crosby et al. 1999; Kal et al. 2000;
Simon and Tamkun 2002). On the other hand,
the complexes can also have distinct or even
opposing functional roles. For example, PBAP
but not BAP is required for germinal stem-cell
maintenance (He et al. 2014). Moreover, BAP
and PBAP have opposing roles in Egfr ex-
pression in wing development; although BAP
positively regulates Egfr expression (Molnar
et al. 2006; Terriente-Felix and de Celis 2009),
PBAP instead negatively regulates Egfr (Ren-
dina et al. 2010). Together, these observations

suggest that mutations in different subunits or
complexes may result in distinct or even oppos-
ing changes to the genomic landscape, a fact
that complicates straightforward predictions
of their effects.

One clue regarding the distinct functions of
BAP and PBAP complexes comes from micro-
scopic examination of polytene chromosomes.
Polytene chromosomes arise from successive
rounds of replication without cell division, re-
sulting in many copies of aligned condensed sis-
ter chromatids (Balbiani 1881). Visualization
of chromatin domains using immunofluores-
cence shows that BAP and PBAP complexes
have both overlapping and mutually exclusive
domains. Polycomb domains are largely not
found at both the overlapping and mutually ex-
clusive BAP/PBAP domains (Armstrong et al.
2002; Mohrmann et al. 2004; Moshkin et al.
2007). This pattern suggests that BAP and
PBAP work both cooperativelyand independent-
ly at distinct sites to oppose Polycomb silencing.

BAF AND PBAF IN MAMMALS

BAF Complexes

In mammals, highly polymorphic BAF com-
plexes (Wang et al. 1996a,b) are composed of
a single central ATPase, either BRG (SMARCA4)
or BRM (SMARCA2), and several BRG-/BRM-
associated factors (BAF subunits) (Khavari et al.
1993). In addition to the subunits homologous
to those in Drosophila or yeast, several other
subunits appear to be dedicated to vertebrate
or mammalian complexes, including SS18/
SS18L1, BCL7A/B/C, BCL11/A/B, and BRD9
(see Fig. 1). Scanning force microscopy of BAF
complexes isolated from HeLa cells show ob-
jects with similar appearances and dimensions
as yeast SWI/SNF or RSC (Schnitzler et al.
2001); however, BAF subunits are frequently in-
activated in long-term cell lines, and so caution
is warranted when inferring the complex’s char-
acteristics based on immortalized cancer lines.

ChIP-seq studies in many cell types show
that BAF complexes bind 20,000–40,000 sites
genome-wide, with broad binding sites some-
times spanning 2–5 kbp, suggesting that more

BAF and PBAF Complexes in Cancer
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than one complex may operate at a given site
(Ho et al. 2009a; Euskirchen et al. 2011). BAF
complexes have many roles in development (Ho
and Crabtree 2010); the presence of BAF com-
plexes on chromatin correlates with enhancers
(Rada-Iglesias et al. 2011), and its activity reg-
ulates a variety of important biological process-
es ranging from self-renewal and pluripotency
in embryonic stem cells (Ho et al. 2009b), to
cardiac development (Lickert et al. 2004), and
neural differentiation (Yoo et al. 2009). BAF
activity and transcription factor (TF) binding
appear to be coupled idiosyncratically, as exam-
ples can be found in which TF binding requires
BAF activity (Ho et al. 2011; Bao et al. 2015) or,
alternatively, in which recruitment of BAF re-
quires existing TF binding (Liu et al. 2001).
Some of the complexes’ subunits are tissue-spe-
cific; for example, BAF53B (ACTL6B), BAF45B
(DPF1), and SS18L1 (CREST, a Ca2þ-respon-
sive regulator), are found only in BAF complex-
es of mature, postmitotic neurons (Olave et al.
2002; Aizawa et al. 2004; Lessard et al. 2007;
Staahl et al. 2013). BAF subunit composition
is subject to tight regulation, as miRNA-based
repression of BAF53A occurs either before or
coincident with the last mitotic division of neu-
rons (Yoo et al. 2009), and failure to express
neural-specific subunits like BAF53B leads to
defects in synaptogenesis and dendritic out-
growth (Lessard et al. 2007; Vogel-Ciernia
et al. 2013). BAF subunit composition also con-
tributes substantially to cell reprogramming
(Singhal et al. 2010; Yoo et al. 2011), an instruc-
tive effect seemingly incompatible with simple
mechanisms of nucleosome mobilization.

Before the modern tumor-sequencing era,
the frequent absence of core BAF subunits in
immortalized cell lines prompted early specula-
tion that BAF subunits were tumor suppressors
(Dunaief et al. 1994). Screening for BRG muta-
tions revealed widespread defects in a number
of different cancer cell lines, and ectopic expres-
sion of BRG in these lines often results in altered
morphology (Wong et al. 2000). Moreover,
many cell lines down-regulate both BRG and
BRM ATPases (Reisman et al. 2002). In cultured
cells, BAF complexes missing the core ATPase
fail to bind the tumor suppressor RB1 and sup-

press E2F1 (Dunaief et al. 1994; Trouche et al.
1997), although it remains uncertain whether
this feature reflects its central role in primary
tumors. Moreover, as described below, several
specific malignancies are driven entirely by
BAF subunit dysfunction. Abundant evidence
now shows that BAF complexes act as major
tumor suppressors.

PBAF Complexes

PBAF complexes were first discovered by Tjian
and colleagues in a search for factors that acti-
vated ligand-mediated transcription on nucle-
osomal templates (Lemon et al. 2001). PBAF
complexes contain PBRM1 and ARID2 but
lack ARID1A/B. PBAF complexes also contain
BRD7 in place of BRD9 (Kaeser et al. 2008),
BAF45A (PHF10) instead of BAF45B/C/D
(DPF1/3/2), and lack SS18 (see Fig. 1) (Mid-
deljans et al. 2012). EM reconstruction of PBAF
complexes from HeLa cells show heterogeneous
.1-MDa structures with similarities to RSC
from yeast (Leschziner et al. 2005); however,
because BAF and PBAF complexes are combi-
natorially assembled, the origin of the observed
heterogeneity of these structures remains uncer-
tain. Several subunits share some homology
with subunits of the yeast RSC complex, and
like RSC, PBAF complexes show significant oc-
cupancy at the kinetochores of mitotic chromo-
somes (Xue et al. 2000), suggesting an impor-
tant conserved role in cell division.

PBAF subunits regulate cell differentiation
and may be an important regulator of cell-type
identity (Bajpai et al. 2010; Xu et al. 2012). Ad-
ditionally, a large body of evidence shows that
PBAF complexes have important roles in the
maintenance of genomic integrity during mito-
sis, described in more detail below (see section
on Nontranscriptional Roles of BAF/PBAF
Complexes in Cancer).

BAF AND PBAF SUBUNITS ARE FREQUENTLY
DISRUPTED IN CANCER

In mammals, 28 genes have been discovered to
date with close sequence homology with the
yeast Snf2 ATPase (Fig. 2A). Despite sharing
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Figure 2. The family of human Snf2-like ATPases and their differing roles in cancer. (A) Human Snf2-like
ATPases cluster into groups based on degree of sequence similarity. The chromatin remodelers from model
organisms are shown near these groups in bold. Radial dendrogram constructed using TreeDyn (Chevenet et al.
2006). (B) Human Snf2-like ATPases are mutated at different frequencies across all cancer types. The total
number of mutations appearing in cBioPortal (including public datasets from The Cancer Genome Atlas
(TCGA), Cancer Cell Line Encyclopedia (CCLE), and others cited in the text) is summed for each gene and
presented by the type of mutation. Missense mutations predicted to have neutral, low, or medium functional
impact are not shown because of the unknown nature of their effects and increased likelihood to be background
mutations. (C) The number of mutations of each BAF/PBAF subunit is presented as in B. ARID1A and PBRM1
frequently undergo truncating mutation, but BRG (SMARCA4) frequently has missense mutations with high
functional impact.
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highly conserved Snf2-like ATPase domains,
these ATPases play distinct biological roles and
are nearly all functionally nonredundant be-
tween the different remodeling families, as re-
viewed elsewhere (Clapier and Cairns 2009).
Based on their distinct biological activities, dis-
ruption of each of these remodelers is under a
different selection pressure in cancer, resulting
in a wide range of mutation frequencies (Fig.
2B). Across all cancer types, �20% of human
malignancies have defects in BAF-related com-
plexes (Kadoch et al. 2013; Shain and Pollack
2013) making them among the most frequently
mutated chromatin regulatory complexes in
malignancy.

In addition to their ATPases BRG and BRM
(Khavari et al. 1993), BAF and PBAF com-
plexes contain a number of noncatalytic sub-
units that contribute to targeting of the complex
to cognate loci, or have other unknown func-
tions. BAF and PBAF complexes collectively
contain eight bromodomains (six on PBRM1,
one on either BRG or BRM, and one on BRD7
or BRD9), a region homologous with chromo-
domains (BAF155/170), two PHD finger pro-
teins (BAF45 subunits), a large number of
zinc finger and other DNA-binding domains
that bind distinct architectural features such as
AT-rich sequences or HMG recognition features
(Wang et al. 1996a,b, 1998; Lessard et al. 2007).
Some of these subunits are among the most
frequently mutated genes in cancer, and highly
subunit-specific mutation patterns contribute
to different cancer types (Figs. 2C and 3). Below,
we summarize the role of these subunits in
the complex, and discuss their contribution
to malignancy.

BRG (SMARCA4) Is Mutated in Many
Different Malignancies

As defined by the overall number of truncating
and high-functional-impact mutations, BRG is
the most frequently mutated Snf2-like chro-
matin remodeling ATPase in cancer (Fig. 2C).
Unlike many other tumor suppressors, hyper-
methylation and silencing of BRG is reported to
be relatively uncommon (Medina et al. 2004;
Ramos et al. 2014). However, heterozygous

and biallelic inactivation of BRG occurs in
tumors of the breast (The Cancer Genome
Atlas 2012b), lung (The Cancer Genome
Atlas 2014c), stomach (The Cancer Genome At-
las 2014a), bladder (The Cancer Genome Atlas
2014b), colon (The Cancer Genome Atlas
2012a), and in several other tumor types and
cell lines (Wong et al. 2000). Disruption of
BRG is especially common in small cell ovarian
cancer (90%–100%) (Jelinic et al. 2014; Ramos
et al. 2014), cancers of the skin (up to 27%)
(Hodis et al. 2012; Li et al. 2015; Shain et al.
2015; The Cancer Genome Atlas 2015), diffuse
large B-cell lymphoma (10%), and non-small-
cell lung cancers (�11%) (Imielinski et al. 2012;
Rizvi et al. 2015), inwhich it has been reported as
the fifth most frequently mutated gene (Medina
et al. 2004). In some specific malignancies, such
as certain thoracic sarcomas (Le Loarer et al.
2015), biallelic inactivation of BRG occurs at
elevated frequencies. Although it was initially
thought that in most cancers BRG mutations
were generally homozygous (Medina and San-
chez-Cespedes 2008; Medina et al. 2008), it has
since been determined that, in many cancer
types, a large number of mutations of BRG are
heterozygous, with many mutations clustering
at conserved motifs of the ATPase domain. Ac-
cordingly, CRISPR-Cas9 tiling experiments have
shown that the ATPase domain contains the
most functionally important domain of BRG
(Shi et al. 2015).

The ATPase domain of Snf2-like remodelers
is composed of two conserved subdomains. The
amino-terminal ATPase subdomain of BRG
contains several residues highly conserved with-
in the SF2 helicase superfamily (Jankowsky and
Fairman 2007; Fairman-Williams et al. 2010).
Based on crystal structures of homologous
Snf2-like proteins (Durr et al. 2005; Thoma
et al. 2005; Wollmann et al. 2011), many of these
residues are predicted to contact ATP (Walker
et al. 1982) or communicate the strain of ATP
binding and hydrolysis to the site of DNA bind-
ing to exert mechanical force (Banroques et al.
2008), and are frequently mutated in a number
of malignancies (Figs. 3 and 4). Some effects
of these mutations have been characterized.
For example, K785R and T910M, respectively,
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Figure 3. Mutations of BAF and PBAF subunits occur in subunit-specific patterns in cancer. (A) (Left panel)
Illustration of the different types of genetic and epigenetic disruptions that affect BAF/PBAF subunits in
cancer. Deletion of chromosome arms or foci leads to loss of a subunit allele, point mutations alter coding
sequence, gene fusions lead to altered function, and hypermethylation of promoters associated with loss of
expression. (Legend continues on following page.)
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observed in melanoma (Hodis et al. 2012; The
Cancer Genome Atlas 2015), medulloblastoma
(Pugh et al. 2012), and several cancer cell lines,
have severely reduced ATPase activity, leading
to anaphase bridges and failure of topoisomer-
ase IIa to bind DNA (Dykhuizen et al. 2013)
(discussed in greater detail below). Adjacent res-
idues are mutated in a number of different
cancer types, suggesting that functional inacti-
vation contributes to diverse malignancies. In
other ATP-dependent remodelers, dominant-
negative mutations result in phenotypes dis-
tinct from subunit deletion (Corona et al.
2004; Skene et al. 2014), suggesting that the par-
ticular mechanisms of inactivation may lead to
different downstream effects.

Although the details remain murky, the car-
boxy-terminal subdomain of Snf2-like ATPases
appears to cooperate with the amino-terminal
subdomain to exert large-scale motions needed
to translocate along DNA (Durr et al. 2005)
but may also carry out some other uncharacter-
ized activity. In the carboxy-terminal ATPase
subdomain of BRG, R1192 is recurrently
mutated in cancer of the stomach, liver, lung,
melanoma, esophagus, and breast, as well as in
gliomas (Figs. 3 and 4). Moreover, the homol-
ogous position is also mutated in BTAF1,
CHD1, and ATRX in several different malignan-
cies, suggesting this well-conserved position
may be an Achilles’ heel of Snf2-like remodelers.
Other nearby mutations at conserved residues
in Motif V of the carboxy-terminal subdomain
severely compromise ATPase activity in the yeast
SWI/SNF complex (Richmond and Peterson
1996; Smith and Peterson 2005). Although it
is clear that commonly observed point muta-
tions disrupt or completely abolish ATPase ac-
tivity, a complete accounting of the downstream

effects of these mutations in malignancy has not
yet been performed.

BRM, the paralog of BRG that is not a sub-
unit of the PBAF complex, also shows similar
clustering of mutations at the amino- and car-
boxy-terminal helicase-like subdomains, but is
much less frequently mutated in cancers (Figs. 3
and 4). Interestingly, several in-frame deletions
in the QLQ domain of BRM have been observed
in primary tumors and several cancer cell lines
(Reinhold et al. 2012). BRM and homologs are
regulators of splicing (Batsche et al. 2006; Tyagi
et al. 2009; Waldholm et al. 2011; Patrick et al.
2015); however, the effects of its mutation on
alternative splicing remain unknown.

ARID1A in Uterine, Colorectal, Stomach,
Bladder, and Other Cancers

By far the most frequently disrupted BAF sub-
unit is ARID1A (BAF250A; Fig. 2B). Large re-
gions of both ARID1A and its paralog ARID1B
are low-complexity sequences with unknown
function. ARID1A and ARID1B both contain
an ARID DNA-binding domain as well as a ho-
mologous domain of unknown function (cur-
rently designated DUF3518 in Pfam; Fig. 4).
Although the function of this carboxy-terminal
domain has not yet been described, it has been
speculated to have ubiquitin ligase activity (Li
et al. 2010).

Among the earliest reports of the com-
plex’s tumor-suppressor role was the discovery
that �50% of ovarian clear cell carcinomas and
endometriosis-associated ovarian carcinomas
contain inactivating ARID1A mutations (Jones
et al. 2010; Wiegand et al. 2010). Mutations of
ARID1A have since been observed at high fre-
quency in a number of studies, including uterine

Figure 3. (Continued) (Right panel) Mechanisms leading to altered BAF/PBAF subunit expression in cancer
may also include mutations in enhancers, loss of insulated neighborhoods leading to spreading of heterochro-
matin over BAF/PBAF genes, enhancer hijacking, and antisense silencing. (B) Heat map of the frequency of
subunit alterations across cancer types (frequency includes all nonsilent mutations, biallelic deletions, and gene
fusions). Mutation frequencies for malignant rhabdoid tumor (MRT) and synovial sarcoma are inferred from
available cytogenetic and mutation data, as described by works cited in the main text. All other data obtained
from studies cited in the main text. PCNSL, Primary central nervous system lymphoma; DLBCL, diffuse large
B-cell lymphoma; AML, acute myeloid leukemia.
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endometrial carcinoma (34%) (Kandoth et al.
2013), colorectal cancers (10%) (The Cancer
Genome Atlas 2012a), as well as cancers of the
bladder (29%) (Gui et al. 2011), stomach (34%)
(Wang et al. 2011a, 2014), cholangiocarcinomas
(27%) (Jiao et al. 2013), neuroblastomas (11%)
(Sausen et al. 2013), and pancreas (�5%) (Bian-
kin et al. 2012). These recurrent loss-of-function
mutations make ARID1A the premier tumor-
suppressor subunit of the BAF complex; howev-
er, very little is known about the mechanisms of
how this subunit contributes to malignancy.

Mutations of ARID1A are most frequently
truncating mutations (frameshifts and non-
sense mutations (Figs. 2C and 4), which may
be degraded by nonsense-mediated decay. Al-
though the ARID domain in mice is critical
for the function of the protein, mutations in
human cancer are not especially localized to
the ARID domain; indeed no missense muta-
tions expected to be of high functional impact
have currently been reported in the ARID
domain (Fig. 4). The few missense mutations
present are generally predicted to have low or

BRM (SMARCA2)

QLQ HSA BRK Snf2-like N-term C-term SnAC BD

PBRM1

BD1 BD2 BD3 BD4 BD5 BD6 BAH1 BAH2 HMG

BRG (SMARCA4)

HSA BRK Snf2-like N-term C-term SnAC

ARID2

RFXARID

ARID1A

DUF3518ARID

+30

ARID1B

DUF3518ARID

Legend

Truncating mutations
(frameshift, nonsense)
Splice mutations

Missense mutations
(high functional impact only)

In-frame insertions/deletions

Data: TCGA/CCLE/cBioPortal

1000 bp

BDQLQ

Figure 4. Cancer mutations of BAF/PBAF subunits arise in characteristic patterns. ARID1A, ARID2, and
PBRM1 are primarily affected by truncating mutations. The ATPases BRG and BRM show a high
tendency for missense mutations at the conserved Snf2-like ATPase domains. Missense mutations pre-
dicted to have neutral, low, or medium functional impact are not shown because of the unknown nature
of their effects and increased likelihood to be background mutations. N-term, Amino terminal; C-term,
carboxy terminal.
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medium functional impact and are distributed
uniformly over the gene. The hotspots of trun-
cating mutations that occur are explained in
part by frequent ARID1A mutations arising
in tumors with mutated DNA polymerase 1

(POLE). As a result of failed leading-strand
proofreading during replication, POLE-mutat-
ed tumors often have huge numbers of C.T
transitions, many of which convert arginine co-
dons (CGA) to stop codons (TGA) (Alexandrov
et al. 2013). Biallelic inactivation of ARID1A
does occur, but in many cases (particularly in
gastric and endometrial cancer) mutations oc-
cur in only a single allele (Kandoth et al. 2013).
However, hypermethylation of the ARID1A
promoter has been observed in many breast
cancers; hence, epigenetic silencing mecha-
nisms are also common (Zhang et al. 2013).

In ovarian cancer, mutation of ARID1A fre-
quently co-occurs with activating mutations
of phosphatidylinositol 3-kinase (PI3K). In-
terestingly, BRG binds the PI3K substrate PIP2

(phosphatidylinositol 4,5-bisphosphate), a
phospholipid with several roles in signaling
and a regulator of actin-related proteins. Bind-
ing of PIP2 by Brg regulates association of the
complex with actin (Rando et al. 2002); there-
fore, activating mutations of PI3K may de-
plete PIP2, leading to altered BAF localization
or function (Zhao et al. 1998). Mice with
ARID1A/PI3K double mutations, but not
mice with only a single ARID1A or PI3K muta-
tion, develop ovarian tumors with features sim-
ilar to ovarian clear cell carcinoma (Chandler
et al. 2015), suggesting the effects of PIP2 may
be mediated through ARID1A-containing com-
plexes and providing new insight into the coop-
eration of these two genes in cancer.

ARID1B is mutated in several malignancies
and, like ARID1A, these mutations are also
mostly truncating (Fig. 4). However, ARID1B
mutations are not as frequent as those of
ARID1A (Fig. 2C). This discrepancy may re-
flect important functional differences between
these two genes, or may instead reflect ARID1B
expression in fewer cell types. Interestingly,
ARID1B has been identified as one of the most
important genes involved in neurodevelopmen-
tal disorders (Santen et al. 2012; Tsurusaki et

al. 2012; Deciphering Developmental Disorders
Study 2015), further illustrating the relevance of
combinatorial subunit assembly of BAF com-
plexes to development and human diseases.

PBRM1 in Clear Cell Renal Carcinoma

PBRM1 (BAF180, Polybromo) is named for the
presence of six bromodomains in the protein,
and is a defining subunit of the PBAF complex.
In renal clear cell carcinoma (ccRCC), mutation
or loss of PBRM1 occurs in �41% of cases (Va-
rela et al. 2011), making it the second-most fre-
quently mutated gene in ccRCC. Like ARID1A
in other cancers, the majority of mutations of
PBRM1 in ccRCC are truncating mutations
(Figs. 2C and 4), which may not result in pro-
tein expression because of nonsense-mediated
decay. However, many ccRCC cases have bial-
lelic inactivation of PBRM1, through loss of one
allele via focal/chromosomal deletion at chro-
mosome arm 3p, and an inactivating mutation
on the remaining allele. Furthermore, hyper-
methylation of the PBRM1 promoter is gener-
ally absent in ccRCC (Ibragimova et al. 2013),
indicating that inactivation occurs primarily
through mutation or deletion. Some tumors
do contain missense mutations, and although
their functional impacts remain uncertain, their
presence suggests a degree of nonredundancy
between these domains. Although most bromo-
domains bind acetylated lysines from histones,
the role of PBRM1’s bromodomains toward tar-
geting of PBAF complexes remains uncertain.

In ccRCC, PBRM1 inactivation frequently
coincides with mutation of the VHL (von Hip-
pel–Lindau) tumor suppressor. Because of
their close proximity on chromosome arm 3p,
focal and chromosome arm-level deletions
frequently affect both of these genes simultane-
ously. However, the striking frequency of inac-
tivating point mutations of PBRM1 alongside
VHL and BAP1 mutations suggests that joint
inactivation of these genes may potentiate the
oncogenic nature of these defects (Gerlinger
et al. 2014).

Like PBRM1, ARID2 (BAF200) encodes an-
other subunit dedicated to PBAF complexes.
ARID2 is not a homolog of ARID1A/B, but is

C. Hodges et al.
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instead mutually exclusive with ARID1A/B, al-
though the shared presence of an AT-rich inter-
action domain (ARID) in these three subunits
suggests some common structural similarities.
ARID2 is frequently mutated in other malig-
nancies but is apparently not targeted in ccRCC
as frequently as PBRM1, suggesting that PBRM1
has an important and distinct functional role
as a member of the PBAF complex in kidney
cells. ARID2 has been reported to contribute
to repression (Raab et al. 2015), and is frequent-
ly mutated in melanoma (Hodis et al. 2012;
Ding et al. 2014; Lee et al. 2015), non-small-
cell lung cancer (Manceau et al. 2013), as well
as in �18% of hepatitis-associated hepatocellu-
lar carcinomas (Li et al. 2011). Moreover, the
discovery of frequent joint inactivation of
PBRM1, ARID2, and BAP1 in biliary-pheno-
type-displaying subtype of hepatic carcinomas
(Fujimoto et al. 2015) suggests that in some
contexts they may contribute to malignancy in
a cooperative manner.

SMARCB1 in Malignant Rhabdoid Tumors

Perhaps the best-characterized example of a
tumor-suppressor role for ATP-dependent chro-
matin remodeling comes from malignant rhab-
doid tumors (MRTs). MRTs are rare but highly
lethal childhood cancers that are caused by bial-
lelic inactivation of SMARCB1 (BAF47, SNF5,
or INI1), which occurs in nearly all cases (Ver-
steege et al. 1998; Roberts et al. 2000). The classic
loss of heterozygosity observed for SMARCB1
leads to aberrant activation of Hedgehog-Gli
and Wnt/b-catenin pathways (Jagani et al.
2010; Mora-Blanco et al. 2014), and important-
ly, impairs the ability of BAF/PBAF complexes
to regulate the placement and function of Poly-
comb repressive complexes. As a result of fail-
ure to oppose Polycomb, the repressive mark
H3K27me3 accumulates at the tumor suppres-
sor p16/INK4A (CDKN2A) locus (Wilson et al.
2010). The impaired opposition to Polycomb
repression plays an important role in cancer,
reminiscent of BAP/PBAP complexes through-
out development in flies (Tamkun et al. 1992).

MRTs have remarkably stable diploid ge-
nomes except for deletions and mutations at

chromosome 22q, where SMARCB1 is located
(McKenna et al. 2008; McKenna and Roberts
2009; Lee et al. 2012). Exome sequencing also
shows that these tumors have among the lowest
mutational loads of any human tumor se-
quenced to date (Lawrence et al. 2014). Finally,
ectopic expression of SMARCB1 reverses Poly-
comb silencing at the tumor suppressor p16/
INK4A locus, leading to cellular senescence
(Oruetxebarria et al. 2004; Kia et al. 2008), in-
dicating that these tumors are driven exclusively
by epigenetic regulation (except for the original
genetic inactivation of SMARCB1). In addition
to MRTs, SMARCB1 appears to play a role in a
number of cancers and other neoplastic dis-
orders, including prostate cancer, epithelioid
sarcomas, familial schwannomatosis, and re-
nal medullary carcinomas (Roberts and Biegel
2009; Prensner et al. 2013). Biallelic inactivation
of SMARCB1 has also been reported in 7%–
10% of Ewing sarcomas (Jahromi et al. 2012).

In mouse models, conditional deletion of
SMARCB1 leads to T-cell lymphomas with
short latency and 100% penetrance (Wang
et al. 2011b), suggesting that SMARCB1 inacti-
vation can cause fast transformation alone with-
out other genetic changes, as observed in MRTs.
Interestingly, rhabdoid tumors are not seen in
mice with SMARCB1 inactivation, attesting to
the tissue-specific and species-specific function
of the complexes. Importantly, the pathogenesis
of most human malignancies with BAF/PBAF
mutations may be different from that of MRTs.
With the exception of some noteworthy ex-
amples described below, the majority of can-
cers bearing BAF/PBAF subunit mutations
are found in older age groups, in which tumors
have long latencies, are highly mutated, and are
genomically unstable. Thus, the low mutation
rates observed in MRTs may be because of the
extremely short latency between biallelic inacti-
vation and transformation, which may not al-
low accumulation of mutations resulting from
impairment of the complex’s other functions.

SS18 in Synovial Sarcoma

Synovial sarcoma is an aggressive, poorly differ-
entiated, stem-cell-like soft-tissue malignancy
that typically arises in the extremities of young
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adults. The hallmark of synovial sarcoma is a
highly characteristic translocation of chromo-
somes 18 and X, which fuses the dedicated
BAF subunit SS18 (Middeljans et al. 2012) to
the SSX fusion partner on the X chromosome
(Crew et al. 1995; Naka et al. 2010). This fusion
occurs in nearly all cases and in some cases is the
only known cytogenetic abnormality. Despite
the continued existence of the remaining wild-
type SS18 allele and unaltered BAF47 alleles,
the SS18–SSX fusion is preferentially assembled
into the BAF complex concomitant with com-
plete loss of BAF47 from the complex. BAF com-
plexes containing the SS18–SSX fusion are re-
targeted to oncogenic loci such as SOX2 and
PAX6, where removal of the repressive histone
mark H3K27me3 results in transformation (Ka-
doch and Crabtree 2013).

Forced overexpression of wild-type SS18,
or shRNA-mediated knockdown of the SS18–
SSX fusion, is sufficient to reverse oncogenic
BAF subunit composition. Reversion leads to
increased levels of H3K27me3 at SOX2 and
other oncogenic loci, and loss of proliferation
(Kadoch and Crabtree 2013), indicating that
transformation is maintained through epige-
netic mechanisms. The reversible and remark-
ably specific pathogenesis of synovial sarcoma
suggests that this tumor may be an attractive
candidate for development of therapeutics.

A number of similarities exist between
synovial sarcoma and MRTs. They are both
childhood malignancies driven by a defining
alteration of a single BAF subunit, and senes-
cence can be achieved by repair of the affected
subunit. Moreover, SMARCB1 activity is abol-
ished in both cancers, albeit through different
mechanisms. However, in contrast to MRTs,
which transform by failing to oppose Polycomb
activity at p16/INK4A, the genetic dominance
of the SS18–SSX fusion in synovial sarcoma
arises from its preferential assembly into BAF
complexes, and its apparent ability to retarget
the complex and oppose Polycomb at oncogen-
ic loci (Kadoch and Crabtree 2013).

BAF53A and the Role of Nuclear Actin/ARPs

BAF53A (ACTL6A) is an ARP and a subunit of
BAF/PBAF complexes that is rarely mutated in

cancer. Instead, BAF53A frequently undergoes
amplification in squamous cell malignancies
from many different tissues of origin. BAF53A
is required for maintenance of hematopoietic
stem cell identity (Krasteva et al. 2012), and
also maintains a progenitor state in epidermal
cells by repressing KLF4, an activator of differ-
entiation (Bao et al. 2013). Recent work has also
shown that BAF53A is a target of miR-206,
a microRNA missing in rhabdomyosarcomas
(RMS). The resulting up-regulation of BAF53A
in RMS cells contributes to the failure of myo-
genic cells to properly differentiate (Taulli et al.
2014), whereas its silencing inhibits prolifera-
tion of RMS cells, suggesting that BAF53A
promotes proliferation and interferes with dif-
ferentiation. Therefore, it is appealing to specu-
late that BAF53A may generally have oncogenic
or mitogenic role in many cell types, perhaps
based on interaction with the BRG/BRM heli-
case-SANT-associated (HSA) domain (Zhao
et al. 1998; Rando et al. 2002; Szerlong et al.
2008). Ablation of the HSA domain from Sth1,
the ATPase of RSC in yeast, causes the specific
loss of ARPs from the complex, and a reduction
in the activity of the ATPase.

ARPs are genetically essential subunits of
SWI/SNF-like remodelers (Shen et al. 2003;
Wu et al. 2007), and the interaction of actin
and ARPs with the HSA domain from Snf2-
like ATPases has long been thought to regulate
their activity. Although complexes reconstitut-
ed without actin or ARPs can achieve remodel-
ing activity comparable to intact complexes in
vitro (Phelan et al. 1999), BAF53A/B is required
for BAF function in vivo. The crystal structure
of the Snf2 HSA domain with Arp7 and Arp9
shows that actin filament formation is unlikely
because of the incompatible position adopted
by the ARPs (Schubert et al. 2013). Thus, rather
than binding filamentous actin, the ARPs in the
complex may instead modulate ATPase activity
or the coupling of ATP hydrolysis to remodeling
activity.

Important structural differences exist be-
tween the yeast complexes and human complex-
es (Zhao et al. 1998). In yeast, both the SWI/
SNF and RSC complexes contain Arp7 and
Arp9 as obligate heterodimers (Szerlong et al.
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2003), but lack actin itself (Cairns et al. 1998;
Peterson et al. 1998). In contrast, BAF and
PBAF complexes contain BAF53A/B and actin
(Zhao et al. 1998). Therefore, it remains unclear
whether the structures from yeast also apply
directly to the mammalian complexes. As a re-
sult, it remains unknown how excess BAF53A
may affect the activity of BAF and PBAF com-
plexes.

NONTRANSCRIPTIONAL ROLES
OF BAF/PBAF COMPLEXES IN CANCER

Involvement in DNA Repair
and Chromosome Stability

In addition to their well-established roles as epi-
genetic regulators described above, BAF/PBAF
complexes have several nontranscriptional roles
that also contribute to malignancy. One non-
transcriptional role in cancer is found in DNA-
repair pathways. Various mechanisms have
been proposed for recruitment of BAF/PBAF
complexes to sites of DNA damage, includ-
ing ATM-/ATR-dependent phosphorylation of
BAF170 (Peng et al. 2009), and a direct interac-
tion between g-H2A.X and the BRG bromodo-
main (Lee et al. 2010). In addition, evidence
now points to roles for BAF and PBAF in both
NHEJ and HR pathways (Ogiwara et al. 2011;
Watanabe et al. 2014; Brownlee et al. 2015; Qi
et al. 2015). Therefore, in humans, BAF and
PBAF complexes may help protect genomic
integrity similar to the INO80 complex in bud-
ding yeast (Gerhold et al. 2015), which interest-
ingly is not frequently mutated in cancer.

In addition to well-established pathways of
DNA repair, PBAF complexes have other im-
portant roles for maintaining genomic stability.
PBRM1 plays a critical role in sister chromatid
cohesion, in which misregulation leads to ge-
nome instability, anaphase bridges, and aneu-
ploidy (Brownlee et al. 2014). PBRM1 also plays
a role in repriming stalled replication forks
similar to yeast RSC complexes (Askree et al.
2004). Stalled replication forks are common
sites of DNA damage, providing another impor-
tant mechanism for ensuring genome integrity
(Niimi et al. 2012). Recently, roles for PBAF but

not BAF have been identified in DNA-damage-
induced transcriptional repression that involves
PRC1/2 subunits (Kakarougkas et al. 2014),
and ubiquitination of PCNA following DNA
damage (Niimi et al. 2015).

BAF and PBAF subunits occupy regions that
are critical for chromosome organization, such
as the binding sites of CTCF (CCCTC-binding
factor), cohesins, lamin, and replication origins
(Euskirchen et al. 2011). In addition to the loop
anchor sites formed by CTCF and cohesins,
which appear to be master regulators of topo-
logical domains in stem cells and cancer cell
lines (Kagey et al. 2010; Dixon et al. 2012; Yan
et al. 2013; Dowen et al. 2014; Ji et al. 2015),
several other chromatin organizational ele-
ments have been identified in eukaryotes, such
as tRNA genes (Kirkland et al. 2013), repetitive
elements (Lunyak et al. 2007), transposons
(Lippman et al. 2004), and PRC1-binding sites
(Bantignies et al. 2011; Schoenfelder et al. 2015;
Wani et al. 2016). Chromatin architectural sites
are often subject to epigenetic regulation (Bell
and Felsenfeld 2000; Wang et al. 2012) and show
significant BAF and PBAF enrichment (Eus-
kirchen et al. 2011), suggesting that BAF and
PBAF may play important roles in regulating
overall chromatin architecture.

Synergy between BAF and Topoisomerase
Function

Topoisomerases require nucleosome-free DNA
(Sperling et al. 2011), and mutants of BRG that
impair ATPase activity induce loss of topoisom-
erase IIa (TOP2A) binding to DNA, leading to
topological defects, anaphase bridges, and par-
tial arrest at the relatively uncharacterized de-
catenation checkpoint (Dykhuizen et al. 2013).
Lung cancer cell lines with BRG mutations show
increased sensitivity to topoisomerase II in-
hibitors when EZH2 is also inhibited (Fillmore
et al. 2015), suggesting interplay between BAF,
TOP2A, and PRC2 in the maintenance of chro-
matin topology. The importance of BAF’s activ-
ity toward TOP2A function was recently under-
lined by the observation that mutations in BAF
subunits predict responses to treatment with
TOP2A inhibitors (Pang et al. 2015; Wijdeven
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et al. 2015). Importantly, the mechanism of
opposition to EZH2 consists of more than op-
posing its methyltransferase activity (Kim et al.
2015), and may underlie an aspect of BAF’s
tumor-suppressor function with significant
clinical importance.

TARGETING TUMORS WITH BAF/PBAF
DEFICIENCIES

Recent reports suggest new approaches for tar-
geting tumors with altered BAF/PBAF com-
plexes based on synthetic lethality. In several
tumor types, inactivation of one BAF/PBAF
subunit induces dependency on the continued
expression of that subunit’s paralog. For exam-
ple, tumors with BRG mutations frequently de-
pend on the expression of BRM (Aguirre et al.
2014; Wilson et al. 2014), whereas tumors with
ARID1A mutations often depend on ARID1B
(Helming et al. 2014). Targeting these gene-
tic dependencies represents a novel strategy
to attack these tumors. Additionally, loss-of-
function of BAF/PBAF subunits may lead to

increased Polycomb activity; therefore, inhibi-
tion of Polycomb silencing may be beneficial for
patients with tumors bearing BAF/PBAF defi-
ciencies. However, the effectiveness of these
approaches may depend greatly on the down-
stream consequences of BAF/PBAF dysfunc-
tion within each cell type. For example, PRC2
inhibition may be more beneficial for MRTs
than for synovial sarcoma, based on the molec-
ular mechanisms of transformation described
above, illustrating the continuing need to exam-
ine the epigenetic mechanisms within each tu-
mor type.

PERSPECTIVE AND CLOSING REMARKS

Although abundant evidence indicates that BAF
and PBAF defects contribute to malignancy by
altering the epigenetic landscape to regulate
transcription, many lines of evidence indicate
that these defects have pleiotropic effects, be-
cause complexes participate in a number of oth-
er important chromatin regulatory processes. In
addition to their roles in regulating transcrip-

DNA repair

Chromatin
topology

Chromatin
3D organization

PBAF

Alternative
splicing

Loss of TF
accessibility

Polycomb
silencing

BAF

Nontranscriptional rolesTranscriptional effects

Figure 5. The effects of BAF and PBAF dysfunction in cancer. Dysfunctional BAF/PBAF complexes have been
shown to deregulate Polycomb silencing of key tumor suppressors and oncogenes. In model systems, disruption
of BAF- and PBAF-like complexes also affects DNA accessibility for transcription and other regulatory factors,
and impacts splicing patterns. Given the conserved regulatory roles for BAF- and PBAF-like remodelers in DNA
repair, maintenance of chromatin topology and 3D architecture, we anticipate that whole-genome sequencing
and new techniques to examine 3D-chromatin architecture may reveal new roles for the complex in addition to
its well-defined role as a transcriptional regulator.
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tion, a body of work from cancer cell lines and
model organisms indicates that BAF- and
PBAF-like complexes contribute to several oth-
er processes, ranging from DNA recombination
and repair to maintenance of 3D chromatin ar-
chitecture and topology (Fig. 5).

Their numerous roles underscore the fact
that the epigenetic state is more than simply a
regulatory framework for transcription, but in-
stead represents the sum physicochemical state
of the genetic material, which impacts a large
number of processes. As a result, the fundamen-
tal role of any given BAF and PBAF alteration in
cancer is likely to be unique to each cancer type,
and may reflect the idiosyncratic processes that
drive each malignancy (whether oncogene ad-
diction, autocrine signaling, mutagen exposure,
chromosomal instability, etc.). Whole-genome
sequencing and various new techniques to ex-
amine 3D-chromatin architecture may offer
substantial insight into the full breadth of the
effects of BAF and PBAF dysfunction, and reveal
their diverse contributions toward oncogenesis
and tumor biology.
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