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Highlights
Recent developments in single-cell ap-
proaches have provided an avalanche
of data regarding tumor heterogeneity
in many tumor settings. There remains
a great need to systematize and catego-
rize these data to yield biological insights
about tumor function.

Many key features ofmalignancy areme-
diated through interactions between dif-
ferent cell types and the influence of the
local tumor microenvironment.

We describe a conceptual framework
Many malignancies display heterogeneous features that support cancer pro-
gression. Emerging high-resolution methods provide a view of heterogeneity
that recognizes the influence of diverse cell types and cell states of the tumor mi-
croenvironment. Here we outline a hierarchical organization of tumor heteroge-
neity from a genomic perspective, summarize the origins of spatially patterned
metabolic features, and review recent developments in single-cell and spatially
resolved techniques for genome-wide study of multicellular tissues. We also
discuss how integrating these approaches can yield new insights into human
cancer and emerging immune therapies. Applying these technologies for the
analysis of primary tumors, patient-derived xenografts, and in vitro systems
holds great promise for understanding the hierarchical structure and environ-
mental influences that underlie tumor ecosystems.
for analyzing the hierarchy of tumor het-
erogeneity involving cell types and cell
type-specific states.

The interactions of tumor development,
progression, and varying microenviron-
ments give rise to a spatial hierarchy of
tumor heterogeneity.

New technologies for in situ genomics
enable genome-wide study of tumor fea-
tures while preserving spatial information
of microenvironment features.
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Tumor Heterogeneity and Cell Plasticity
The cellular mechanisms that underlie malignancy are diverse, plastic, and adaptable. Many tu-
mors display distinct compartments and heterogeneous phenotypes, with tumor progression
manifesting aspects of ecosystems that adapt and evolve. This diversity is a key aspect of
many cancers that contributes greatly to tumor progression and treatment outcomes [1]. Unfor-
tunately, our current ability to dissect the mechanistic origins of this plasticity remains a persistent
challenge. As a result, one major goal for the foreseeable future of cancer biology is to develop
new high-resolution technologies capable of dissecting heterogeneous tumors to uncover the
unique vulnerabilities operating within each microenvironment.

Genome-wide analysis of bulk tissues has significantly advanced our understanding of carcinogen-
esis [2], and emerging single-cell variants of these technologies are providing powerful opportunities
to reveal new features of complex tissues containing mixed cell types and states. Single-cell and
spatially resolved investigations of tumors have the capacity to reveal context-dependent mecha-
nisms and other spatially restricted cues governing tumorigenesis, metastasis, and response to
treatment. Hence, techniques capable of characterizing heterogeneous cell states and processes
in malignancy have become important tools to identify previously hidden features of cancer.

In this review, we focus on exciting recent genomic and imaging-based technologies that permit
high-resolution dissection of cancer processes at the single-cell level. We begin by highlighting
the recurrent themes and chief contributors to phenotypic heterogeneity in tumors, and propose
a hierarchy of tumor heterogeneity involving cell identities and epigenetic-metabolic states. We
then review new high-resolution approaches, addressing both genomic and optical methods to
characterize epigenomic and phenotypic states at the single-cell level. Together, these tech-
niques are revealing previously unknown interactions in multicellular tissues that contribute to
tumor progression and treatment response.
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Glossary
ATAC: a high-throughput genome-wide
assay for chromatin accessibility.
CUT&RUN: a sensitive alternative to
ChIP-seq that uses micrococcal
nuclease (MNase) fused to protein A.
CyTOF: a mass spectrometry analog to
flow cytometry that measures the
single-cell abundance of many protein
targets.
Multiregion sequencing: dissection of
a tumor into separate discrete regions to
map the variation of its features over
space.
tSNE: an approach to plot high-
dimensional genome-wide data that
places similar cells close together on a
2D graph.
UMAP: a fast plotting procedure similar
to tSNE that better preserves global
structure andwhose output can be used
for further downstream analysis.

Trends in Cancer
The Hierarchy of Tumor Heterogeneity
Bulk tumor populations contain several cell types, including malignant cells and nonmalignant
stromal cells that support or oppose their growth. Although each individual cell within a tumor
adopts a gene expression pattern governed by its cell identity, these patterns adapt in response
to cell-extrinsic factors and the local microenvironment. The exposure to specific local cues is
therefore an important source of heterogeneity for cells sharing the same identity.

These observations led us to propose a general hierarchy describing all sources of heterogeneity
operating within a tumor. At the first level, tumor populations are defined in terms of cell type
or identity (Figure 1). Cells can be segmented based on characteristic inherited features
(e.g., surface markers or cell-specific gene expression patterns), allowing classification of tumors
into either malignant cancer cells or nonmalignant cells, such as immune cells, fibroblasts, and
other stromal cells. These traits can generally be considered irreversible, based on the high epige-
netic barrier to altering cell identity [3–5]. At the second tier of the hierarchy, the individual cell types
can be further categorized based on cell type-specific phenotypic states, often influenced by fea-
tures of the tumormicroenvironment. For example, cancer cells may be grouped based onwhether
they are undergoing oxidative phosphorylation or Warburg metabolism [6]. The variation at this tier
reflects cell-type plasticity, and in contrast to the first tier, these features are reversible based on ec-
topic signals and environmental conditions. Another example is the distinct set of states associated
with immune cell activation, as seen in tumor associated macrophages (TAMs), which have differ-
ent expression patterns and functions based on the pathway of their activation [7]. Yet another ex-
ample is the transition of cancer cells into more aggressive states that promote invasion and
metastasis, often referred to as epithelial-mesenchymal transition (EMT) [8,9]. These and other
cell type-specific state classifications are often associated with important consequences for
tumor progression and play important roles in diagnosis and treatment [9].

The ability of tumor cells to adopt cell type-specific states has been widely known for decades. A
prime example of tumor heterogeneity at the level of cell state can be visualized using
fluorodeoxyglucose (FDG), a glucose analog that marks malignant cells by their increased glu-
cose uptake. Positron emission tomography imaging of FDG is widely used in the clinic to map
the diverse rates of glucose utilization between and within tumors [10]. The resulting
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Figure 1. The Hierarchy of Tumor Heterogeneity. (A) Bulk tumor populations can be divided into distinct cell types from different lineages. Cells with similar cell
identities are present in distinct microenvironments, which affect their epigenetic-metabolic states. Hence capturing the full functional specialization present in tumors
requires finer classification of cells into distinct cell type-specific states. (B) Gene expression patterns vary spatially within the same cell type based on tumor
microenvironment conditions.
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heterogeneity is illustrative of other sources of heterogeneity that also have important functional
consequences. For example, in several cancers, differences in tumor progression arise based
on varied expression of multidrug transporters [11], hormone receptors [10,12], cytokines
[13–16], and neoantigens [17–19]. In several of these cases, treatments focused on cellular iden-
tity alone often result in treatment-resistant phenotypes [12,20]. However, characterizing the en-
tire spectrum of accessible cellular phenotypes provides an avenue to uncover new or shared
vulnerabilities [21–23]. Elsewhere in nature, loss of a key player within an ecosystem can lead
to destabilization of that ecosystem. Similarly, targeting specific vulnerabilities within portions of
heterogeneous tumors may lead to destabilization of the tumor ecosystem, offering new potential
therapeutic windows.

Defining the hierarchy of tumor heterogeneity in this way focuses on cell identities and cell states,
however, many tumors develop distinct genetic changes through clonal or nonclonal evolution [1,
24]. For example, a founding cancer cell can give rise to genetically diverse malignant cells
through a series of clonal expansions [25–27]. Each of these expansions is linked to the conferral
of distinct selective advantages that may vary both in time and space based on the local micro-
environment. We posit that selective pressures operating on these cells are relevant to the cancer
only insomuch as they alter a phenotypic property of the cells or tumor system. For example,
genome-wide profiling of breast cancers [28–31] and glioblastoma [32] reveals far greater diver-
sity at the genetic level than at the transcriptome level. These and many other cancers are rou-
tinely separated into a small number of ‘expression subtypes’, despite thousands of diverse
genetic changes. Hence, until genetic changes confer an irreversible change in expression pat-
terns [33–35], the genetic diversity of tumor cells can in many ways be considered a variation sec-
ondary to cell identity.

Visualizing Tumor Heterogeneity through Single-Cell Technologies
Recent advances in high-throughput sequencing methods enable measurement of the propor-
tions of mixed cell types and cell type-specific states that shape the tumor microenvironment
(Table 1). The most popular commercially available single-cell technologies currently rely on
microfluidic devices that use either patterned microwells for single-cell isolation, or droplet-
based barcoding of individual cells, similar to Drop-seq [36], and are extensively reviewed else-
where [37,38]. Frequently used alternatives to these approaches are based on the clever use
of split-pool barcoding schemes [39,40]. Together, these approaches have confirmed that
many cancers are characterized by recurrent patterns of cell populations and states [9,19,
41–43]. In many cases, the origins of this heterogeneity are thought to be influenced by cytokine
production [13–16,44], variable neoantigen presentation [17–19], stromal content [9,42,45], vas-
cularization [46], and other heterogeneous features.

In recent years, a large toolbox of single-cell epigenomic assays has emerged, based on RNA-
seq [36], ATAC-seq [47,48] (see Glossary), and more recently, CUT&RUN or ChIC-seq [49,
50]. The use of single-cell approaches to characterize cell states within these populations has
lagged the measurement of the proportions of distinct cell types, nevertheless, several important
examples of cell state changes in cancer are beginning to emerge. One of the strongest signa-
tures is the set of changes referred to as EMT, which are associated with a pronounced change
of invasiveness and metastatic potential. Using scRNA-seq of colorectal tumors, EMT-like signa-
tures have been found in a portion of cancer-associated fibroblasts (CAFs) [42]. The increased
EMT-like signature was observed only in CAFs of the tumor and not the epithelial cell population.
In a separate study relying on ligand-receptor annotations, scRNA-seq data from six syngeneic
mouse tumor models was used to deconvolve the complex cell–cell interactions of the tumor mi-
croenvironment [51]. This study discovered a correlation between increased tumor growth and
Trends in Cancer, July 2019, Vol. 5, No. 7 413



Table 1. High-Resolution Technologies for the Study of Tumor Ecosystems

Technology Applications to
cancer

Strengths Limitations/constraints Refs

Genomic and
unbiased

approaches

Nanowell microfluidic
devices

High-throughput
single-cell analysis
of subpopulations

Ease of
use/established
technology

Relatively expensive; loss of spatial
resolution

[47]

Droplet-based
single-cell sequencing

[36,51]

Split-pool based
approaches

No complex
equipment
required

Protocols still in development, loss of
spatial resolution

[39,40,48]

MERFISH

Spatially resolved
RNA expression in
tissues and cells

Applicable to cells
and tissue
sections;
high-resolution

Limited to 1001 unique mRNAs [84,85]

Slide-seq and ‘spatial
transcriptomics’

Applicable to
tissues

Specialized oligomer arrays needed,
limited resolution of ‘spatial
transcriptomics’ is overcome in
Slide-seq

[81–83]

seqFISH

Tens of
thousands of
distinct
transcripts
detected

Specialized primary and readout
probes needed

[86]

FISSEQ
High-resolution
and preserves
spatial information

Expensive equipment; not ideal for
low-abundance transcripts

[87]

Multiregion
sequencing

Addresses
large-scale
heterogeneity

Spatial
information
retained

Low spatial resolution [17,19,24–27,64–69]

LCM

Isolation of cell(s)
based on
microscopic
visualization

Native spatial
information and
cell state retained

Automation required for
high-throughput analyses;

[77–79]

MALDI-IMS
Spatial
proteomics,
metabolomics

Label-free;
preserves spatial
information

Semiquantitative [88–90]

Candidate-based
approaches

Mass cytometry:
CyTOF

Single-cell
proteomics

Quantitative
single-cell
analysis of
proteins

Currently limited to measurement of
~50 parameters per cell

[71–74,76,106]

Immunohistochemistry

Visualization of
heterogeneity of
specific cancer
markers

Retains tumor
niche information

Limited by compatible antibodies and
FISH probes

[76]

CycIF
Visualization of ~60
proteins in tissue
samples

Uses standard
equipment and
reagents

Number of cycles limited by sample
integrity; limited to compatible
antibodies

[92–94]

Histocytometry

Combines
microscopy and
multiplexed
antibody staining

Provides spatial
and contextual
information

Antibody availability and compatibility [91]

FACS
High-throughput
characterization of
bulk samples

Widely available
commercially

Limited by antibodies available; limited
to a few markers

[70,75]

Light-sheet
microscopy

Noninvasive
imaging

Low phototoxicity
Expensive equipment and training
required

[99,100]
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tumor cell secretion of key chemokines that may signal other tumor cells or macrophages that ex-
press cognate receptors. One recurrent feature of single-cell analytical approaches is the frequent
use of inference-based algorithms like SCENICi [52], as well as knowledge-based annotations, for
example, hallmark gene sets from MSigDBii [53], to segregate cells with similar regulatory activi-
ties or phenotypic states into clusters for downstream analysis (Figure 2). Similarly, pathway ac-
tivities can be derived from transcriptomics data using PROGENyiii, which relies on pathway-
responsive gene signatures to define cell states [54].

Conventional single-cell techniques currently rely on dissociated, monodisperse cells. Therefore,
these approaches unfortunately require loss of spatial information. Still, such approaches allow
for measurement of the cell proportions present in tumor cell populations, which has shown pre-
dictive power for classifying tumors based on their distinct microenvironments and their response
to therapy (Figure 2) [55,56]. The transcriptomic patterns of cell type-specific changes are usually
Classifying the tumor microenvironment (TME)

Substituent tumor cell populations can be identified 
using single-cell assays or deconvolved from bulk 
assays. Characterizing the proportions of tumor and 
stromal cells in tumors permits identification of distinct 
classes of TMEs that correlate with response to 
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as gene sets of known hallmarks, can be used to 
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states. 
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Figure 2. Visualizing Tumor Heterogeneity between and within Cell Types. Measuring the overall proportion of each cell type in mixed cell populations plays an
important role in subtyping tumor microenvironments. Within and between cell types, the epigenetic-metabolic states of cells can be classified by examining correlation to
known gene sets associated with specific states.
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less dramatic than those separating cell identities [9], andmany cell type-specific changesmay be
shared betweenmultiple cell types. Therefore, analytical and visualization approaches (e.g., tSNE
or variants like UMAPiv [57]) may benefit by being augmented to include hierarchical approaches
to map cell type-specific changes within subpopulations, rather than discriminating cells based
on global features. The analysis of global features has the advantage of beingmathematically prin-
cipled, but may fail to classify cell type-specific phenotypes, because the variations associated
with them may be small compared with the higher magnitude differences associated with cell
identity, and shared between different cell types. Continued application of these techniques
and development of new analytical tools for refinement may yield new avenues for discovery biol-
ogy and therapeutic intervention.

The Spatial Hierarchy of Tumor Heterogeneity
There is a high degree of spatial correlation within tumors because cells with similar phenotypic
profiles are often contained within similar microenvironments. The phenotypic diversity of cells
is shaped by diverse gradients, including those formed by systemic hormones, local diffusible
factors such as TGF-β [58] and Wnt [59], as well as variable nutrient and environmental cues
[6], and unknown factors that promote proliferation of cells in close proximity to adipocytes
[60]. Furthermore, the heterogeneous tumor immune microenvironment substantially impacts
intratumoral diversity and evolution [19] (Box 1). Altogether, spatial heterogeneity spanning
from the cellular level to the tissue level impacts many physiological properties in cancer
(Figure 3A). Fortunately, several technologies are ideal for clinical and experimental dissection
of these changes.

Arguably one of the best models of spatial patterning in cancer is associated with hypoxia. Both
mathematical modeling and experimental measures of oxygen perfusion in tumors show that
hypoxic or anoxic conditions arise less than 0.5 mm from the vasculature [61]. In cancer, hyp-
oxia arises as tumor cells become further separated from the oxygen-rich blood supply
(Figure 3B). Hypoxic metabolic adaptations therefore allow tumor cells to survive low oxygen
tension [62]. Inventive engineered systems have allowed researchers to experimentally mimic
in vitro the oxygen gradients observed in vivo to study their influence on spatial gene expres-
sion. The metabolic microenvironment chamber (MEMIC) is a chamber for culturing cells with
only a small slit through which oxygen, nutrients, and waste products can transit, inducing a
spontaneous gradient of these factors (Figure 3C). Culturing TAMs in MEMIC increases
Box 1. Tumor Immune Infiltration

Tumor infiltration by immune cells is a critically important source of heterogeneity with great significance for emerging im-
munotherapies. Somatic mutations in tumors generate neoantigens, which influence the tumor microenvironment by
recruiting immune cells and altering local cytokine concentrations [17–19,101–104]. While immune checkpoint blockade
has been particularly effective against several malignancies, there remains wide variation in outcomes, with relapse
occurring in a third of patients [105]. One potentially confounding issue for immune therapies is that the tumor immune
microenvironment contributes both positively and negatively to oncogenic properties [56]. For this reason, identifying
patient- and tumor-specific microenvironments represents a promising strategy to reveal the determinants of differential
therapeutic response.

Divergent aspects of tumor immune cell heterogeneity are exemplified in breast and lung cancer. In breast cancer, tumor
cells secrete cytokines, which recruit inflammatory monocytes that in turn activate gene programs that promote metastasis
to the lung [106]. In the breast, positive feedback loops between cancer cells and macrophages stimulate EMT-like patterns
to promote metastasis [107]. Interestingly, this effect is context-dependent, as metastasis-associated macrophages
can prevent lung metastatic growth by reducing angiogenesis and influencing the extracellular matrix [108]. Altogether, the
study of intercellular signaling between tumor and immune cells represents a complex area with profound implications for
immune-based therapies.
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Figure 3. The Spatial Hierarchy of Tumor Heterogeneity. (A) Spatially resolved imaging- and sequence-based
technologies provide insight into mechanisms that contribute to cancer biology at multiple levels of scale. (B) The
establishment of hypoxia occurs over a short length scale of ~250 μm. Reaction-diffusion equations can model the spatia
gradient of diffusible factors near tumor-stromal boundaries. (C) Experimental study of hypoxic gradients in vitro reveals
that oxygen tension influences spatial gene expression patterns of tumor associated macrophages (TAMs). Abbreviation
ppO2, partial pressure of oxygen.
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l

:

arginase 1 expression in response to hypoxia over a 250–500 μm length scale [63]. This hyp-
oxic response of TAMs is required for induction of revascularization, which allows tumors to
overcome nutrient-poor regions of the tumor. Tumor revascularization in response to hypoxia
is a pinnacle of tumor plasticity and survival that results in high spatial heterogeneity over rela-
tively short distances.

At larger length scales, the effects of tumor evolution dominate the spatial hierarchy. As tumors
adapt to their developing environments, intratumoral variation of gene expression arises. These
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mixed cell populations can have different properties, including differential drug response, which
can significantly influence therapeutic resistance and clinical management [1,64–67]. In primary
clear cell renal cell carcinoma (ccRCC), approximately 75% of driver mutations characterized
are subclonal, while VHLmutations are common to all regions of a tumor, illustrating the complex
roles played by both driving mutations and tumor evolution [68]. Multiregion sequencing has
also demonstrated that spatial limitations and tumor microenvironments cause subclonal mixing
of cells, contributing to diversification of the tumor’s mutational landscape. In colorectal tumors,
single clonal expansions ultimately result in advanced colorectal tumors with large numbers of
mutations due to later selective pressures within the tumor [69]. Altogether, the context-
dependent relationships between cell identity and cell states must be investigated at both the
local level and also across a tumor.

Technologies for Characterizing Multicellular Features in Malignancy
In addition to emerging single-cell technologies described above, other new technologies are also
revealing key insights into malignancy. Below, we review emerging trends for high-resolution
methods that have broad application in cancer research.

Advancements in Cell Sorting and Cytometry
Mixed samples can be analyzed at the single cell level in high-throughput fashion using flow cy-
tometry and fluorescence-activated cell sorting (FACS). Modern combinations of cytometry
with single-cell genomics and upgraded variations such as cytometric time-of-flight mass spec-
trometry (CyTOF) are expected to play an increasingly vital role in defining the heterogeneity of
bulk samples.

Though cytometry traditionally defines cell identity through surface markers, it can be aug-
mented with single-cell sequencing approaches to provide additional levels of information.
Specifically, using FACS in combination with scATAC-seq links the expression of cell surface
markers to changes of the underlying open chromatin landscape [70]. Additionally, CyTOF is
a widely used commercially available tool that permits examination of heterogeneous cell states
within tumors. CyTOF enables highly multiparametric studies of protein abundance, offering
single-cell analysis of up to 50 parameters per cell [71]. One CyTOF study of heterogeneity
within high-grade serous ovarian cancer tumors revealed rare cell populations associated
with poorer outcome that were previously missed by bulk sampling. Their identification may
lead to new and more specific avenues for therapeutic intervention [72]. By combining
CyTOF with proximity ligation assay for RNA (PLAYR), simultaneous high-dimensional single-
cell analysis of mRNA and protein can be achieved at a rate of thousands of cells per second,
providing insight into the relationship between gene expression and protein abundance [73].
Furthermore, coupling of CyTOF with barcoding of normal lung, tumor tissue, and peripheral
blood revealed tumor-specific states of immune cell composition and, importantly, potential
immunotherapy strategies for lung adenocarcinoma [74]. Overall, paired analyses using cytom-
etry are advancing the functionality of cell sorting and yielding a more complete picture of the
heterogeneity contained within bulk samples.

Though flow cytometry is invaluable for high-throughput cell typing, its use inherently requires loss
of spatial information. However, combining cytometry with other techniques can shed light on
spatial heterogeneity as well. NICHE-seq preserves the cell states influenced by surrounding
cells or microenvironments, allowing the characterization of these influences on tumor heteroge-
neity [75]. Here, after in situ labeling of photoactivatable fluorescent markers, FACS is coupled to
high-throughput sequencing to study cellular ecosystems in live animal or ex vivo settings. Apply-
ing NICHE-seq to melanoma identified niche-specific changes in immune cell localization and
418 Trends in Cancer, July 2019, Vol. 5, No. 7
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expression programs, where different myeloid compositions were associated with different extra-
cellular matrix structures [75]. Spatial cell context can also be preserved when combining CyTOF
with immunocytochemistry or immunohistochemistry and high-resolution laser ablation. These
combination approaches have achieved spatial resolution of 1 μm in tissue sections, leading to
the discovery of new subpopulations within conventional breast cancer subtypes [76]. Clever
combinations of existing technologies will continue to advance discovery, providing rich re-
sources with which to test new hypotheses.

Laser-Capture Microdissection
Laser-capture microdissection (LCM) enables the study of spatial heterogeneity while preserving
spatial information. LCM allows for selection and contact-free isolation of cells of interest from dis-
tinct tumor regions with high precision [77]. Briefly, cells of interest are microscopically identified
on tissue sections prior to laser-assisted isolation. Cells are then isolated using a high-intensity UV
laser and collected by laser pressure catapulting. Alternatively, a near-IR laser can be used tomelt
a thermolabile polymer placed atop the cells of interest, enabling their removal. These regions can
be based on morphological features, immunohistochemistry, or expression state. LCM can be
paired with genome-wide analyses where spatial information is otherwise lost [77].

Because LCM simply enables dissection of a biological specimen, many downstream applica-
tions can be employed to reveal characteristics of cell identity and cell state, including analysis
of DNA sequence or copy number, RNA profiling, and mass spectrometry. For example, topo-
graphic single cell sequencing (TSCS) combines LCM, whole-genome amplification, and
single-cell DNA sequencing [78]. TSCS revealed that most mutations and copy number variations
that contribute to intratumoral heterogeneity of invasive ductal carcinomas are a direct result of
multiclonal invasion of local ductal carcinomas in situ [78]. Additionally, by pairing LCM with
computer-aided microscopic isolation (CAMI), researchers created an automated high-
throughput method to analyze cells from tissues or suspensions and automatically guide ex-
traction. CAMI-LCM allows the automatic isolation and subsequent analysis of single cells
based on morphology, location, or presence of specific fluorescently labeled markers [79]. Be-
cause LCM preserves cell context, inferences relating cell identity with the surrounding micro-
environment can be drawn. Increased integration of LCM with automated high-content
systems has great potential to identify new subpopulations that may not be readily detected
by routine histopathology.

Advanced Methods That Combine Genomics with High Spatial Resolution
Several advanced technologies have been developed to perform genome-wide expression stud-
ies in situ, permitting genomic assessment and preservation of local tumor microenvironment
landmarks. In one such plate-based assay, tissue cryosections are partitioned into a microwell
chip where picoliter-scale reverse transcriptase loop-mediated isothermal amplification (RT-
LAMP) reactions take place (Figure 4A). These reactions are subsequently measured using a fluo-
rescence plate reader to reveal spatially variable cell states based on expression patterns of key
genes [80]. In another method, referred to as ‘spatial transcriptomics’ by the authors, tissue sec-
tions are positioned on glass slides affixed with oligo(dT) primers containing unique spatial
barcodes for transcript mapping (Figure 4B). Subsequent fluorescent visualization or RNA-seq
analysis demonstrated spatial transcriptomic heterogeneity while preserving histological context
in breast cancer tissue [81,82]. Interestingly, this approach highlighted that only specific regions
of the tumor had engaged an EMT-like program. A higher-resolution variation of this approach
called Slide-seq substitutes barcoded oligo(dT) primers with barcoded 10-μm beads. Slide-
seq affixes these beads to slides to provide a spatial index onto which tissue cryosections are
placed [83]. Following reverse transcription, tissue digestion, and library amplification, the spatial
Trends in Cancer, July 2019, Vol. 5, No. 7 419
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Figure 4. Advanced Technologies Enable Genomic Characterization of Malignant Processes In Situ. (A) Highly resolved reverse transcriptase loop-mediated
isothermal amplification (RT-LAMP) assay using microwells enables quantitative assessment of RNA expression changes while preserving spatial information. (B) Spatial
transcriptomics using a spatially barcoded poly(dT) capture probes. (C) Multiplexed error-robust single-molecule fluorescent in situ hybridization (MERFISH) enables high-
dimensional investigation of transcription states using error-robust single-molecule fluorescent in situ hybridization (FISH) counting of transcripts. (D) fluorescent in situRNA
sequencing (FISSEQ) enables in situ Sanger-like sequencing while preserving tissue structure. (E) Matrix-assisted laser desorption/ionization imaging mass spectrometry
(MALDI-IMS) enables in situ mass spectrometric analysis of proteins and metabolites with better than single-cell resolution. (F) Principle of multiround, multiplexed tissue
immunofluorescence [multiplexed fluorescence microscopy (MxIF) and cyclic immunofluorescence (CycIF)]. Abbreviation: TOF, time of flight.
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expression profiles are computationally reconstructed. Slide-seq has been employed to spatially
map individual cell types in brain cryosections, as well as the different cell states induced in re-
sponse to injury [83].

Highly multiplexed single-molecule visualization of the number and distribution of transcripts has
also been achieved in cells and tissue sections using successive rounds of fluorescent in situ
420 Trends in Cancer, July 2019, Vol. 5, No. 7
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hybridization (FISH) labeling. Up to 1001 unique mRNAs can be imaged and quantified via
multiplexed error-robust single-molecule fluorescent in situ hybridization (MERFISH). Here, cryo-
sections or cells fixed on coverslips undergo repeated rounds of FISH labeling and imaging with a
set of RNA probes, allowing for the construction of high-dimensional gene regulatory networks
with intercellular and intracellular spatial resolution of individual molecules in tissues (Figure 4C)
[84]. The spatial resolution of MERFISH can be increased by combining with expansion micros-
copy [85], a method of physical sample expansion that results in increased distances between
single molecules. Furthermore, MERFISH is also compatible with immunofluorescence staining
of subcellular structures, allowingmRNAs to be correlated to specific cell compartments [85]. An-
other sequential FISH technique, seqFISH, uses a standard confocal microscope with a fluores-
cent barcoding approach, enabling the detection and subcellular localization of tens of thousands
of genes within single cells. Application of seqFISH to tissue sections allows the identification of
cell–cell interactions such as localized expression of ligand-receptor pairs within neighboring
cells [86].

Another technique, fluorescent in situRNA sequencing (FISSEQ), permits RNA localization of over
8000 genes in cells and tissues through in situ amplification and sequencing of cDNA (Figure 4D).
This method permits 3D fluorescent visualization and identification of mRNA transcripts in cells,
while preserving tissue architecture [87]. By preserving tissue context, in situ approaches allow
high-resolution characterization of cell states relative to molecular and phenotypic spatial
landmarks.

Single-Cell Resolution of Protein/Metabolite Abundance
Spatially resolved visualization of proteins, lipids, metabolites, and post-translational modifica-
tions associated with tumorigenic properties can be achieved in tissue sections through matrix-
assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) (Figure 4E). For ex-
ample, MALDI-IMS has been used to characterize diverse metabolic states of malignancy with
high spatial resolution, including components of glycolysis and the TCA cycle [88,89]. MALDI-
IMS has also revealed highly vascularized regions of ccRCC tumors through detection of proteins
representative of increased tumor vascularization [90]. Additionally, MALDI-IMS enabled identifi-
cation of key histone modifications enriched in surrounding normal tissue relative to the tumor,
thereby visualizing the underlying tumor-specific epigenetic states.

New enzymatic histochemistry approaches allow spatial characterization of metabolic signatures
in complex tissue samples with single-cell resolution [91]. Using consecutive tissue slides, multi-
ple enzymatic activities can be visualized and quantified by enzyme histochemistry and auto-
mated whole-tissue histocytometry. This approach allowed comparison of single-cell metabolic
states of distinct immune cell populations in healthy versus tumor colon tissue [91]. Interestingly,
the microenvironment was found to significantly influence cells of similar identity: glycolytic activity
of tumor-associated macrophages is significantly decreased compared with their counterparts in
normal tissue. Together, in situ protein and metabolic assays permits spatial characterization of
heterogeneous activities otherwise inaccessible through conventional immunohistochemistry.

Conventional immunofluorescent detection of proteins in tissues has been limited by the number
of fluorescent channels on a microscope. However, multiplexed fluorescence microscopy (MxIF)
[92] and a related form, cyclic immunofluorescence (CycIF) [93] are imaging approaches that use
multiround staining with standard reagents and equipment to achieve high-dimensional immuno-
fluorescence images. MxIF and CycIF can detect upwards of 60 proteins through sequential an-
tibody probing, imaging, and fluorophore bleaching to create highly multiplexed images of tumor
tissue at the single-cell level (Figure 4F). In tissues, tissue-based CycIF (t-CycIF) has been used to
Trends in Cancer, July 2019, Vol. 5, No. 7 421



Outstanding Questions
What is the best way to categorize the di-
verse and heterogeneous phenotypes in
a population of malignant and nonmalig-
nant cells?

Can single-cell visualization tools be im-
proved by focusing on hierarchical cell
type-specific classifications rather than
global genome-wide changes?

How can single-cell assays be combined
to relate single-cell phenotypes to
their genetic and epigenetic-metabolic
states?

What are the most important and clini-
cally actionable features of single-cell
data?

What specimen size and resolution are
needed for high-resolution techniques
to reveal therapeutic vulnerabilities?

Are there patterns or characteristic re-
sponses of the tumor ecosystem to
perturbation?

What are the interactions between the
tumor microenvironment and common
genetic changes to tumor suppressors
and oncogenes?
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compare protein expression across a pancreatic tumor section, where CD45+ immune cells were
found to be highly infiltrated within tumor tissue compared with adjacent normal pancreas [94].

Concluding Remarks
The rapid pace of technological advances in genomics and microscopy has resulted in an explo-
sion of new tools for cancer research. These tools are providing powerful opportunities to improve
diagnoses, developmore effective therapies, and understand the complexity of cancer in new de-
tail. In particular, the intersection of sequencing and optical methods is providing multilevel infor-
mation required to investigate altered function in both space and time. Coupling these
approaches with complementary tools, such as small-molecule probes [95] or environmentally
selective optical reporters [96], may help to identify how conditions of the tumor microenviron-
ment impact tumor progression and metastasis with high spatiotemporal resolution.

An important challenge is to apply these tools to uncover the recurrent patterns of cell types and
states that contribute to disease progression and therapeutic response (see Outstanding Questions).
Classification and systematization of tumormicroenvironments is becoming increasingly valuable as a
clinical diagnostic [97]. As a result, high-resolution tumor mapping may increasingly serve an impor-
tant role in clinical diagnosis and treatment. Given their robustness, high scalability, and familiarity to
pathologists, cyclic immunostaining approaches such as MxIF and CycIF may provide the fastest
plausible path to using single-cell data in clinical trials. However, plummeting sequencing costs in
the last decade have supported an avalanche of data-rich assays whose output is encoded by
DNA sequence. In either case, spatially encoded and other highly multiplexed single-cell technologies
are poised to reveal many new insights, as precision oncology increasingly focuses on interactions
between specific cell types and states in situ. We therefore envision a future in which tumor biopsies
are routinely examined for cell type-specific states using high-resolution techniques, in addition to
screening for mutations affecting tumor suppressors and oncogenes.

As genomic methods are augmented to provide single-cell resolution, the preservation of spatial
information remains a major challenge. The trend towards increased integration of genomics and
microscopy suggests that their joint application will play an essential role in the study of malig-
nancy. Several emerging super-resolution imaging techniques (e.g., single-plane illumination mi-
croscopy [98] and lattice light-sheet microscopy [99]) permit fast high-resolution 3D imaging of
live samples, including immune and circulating tumor cells. These optical techniques and many
variants [100] can also provide important insights into dynamic, spatially regulated processes
that contribute to malignancy and tumor biology.

Our understanding of the tumor microenvironment, immune infiltration, and stemness, is becom-
ing increasingly comprehensive thanks to many innovative quantitative techniques that can cap-
ture the heterogeneity of cell states in tumors. These technologies are expected to complement
emerging immune-based and related therapies [56] by revealing currently unknown multicellular
interactions that promote cancer.

Acknowledgments
We apologize to the many authors whose relevant work we could not cite due to space constraints. We thank J. Rosen, X.

Chen, and K. Cermakova (Baylor College of Medicine), and W. Wang (M.D. Anderson Cancer Center) for helpful feedback.

This work was supported by NIH grant R00CA187565 (H.C.H.), CPRIT grant RR170036 (H.C.H.), the V Foundation grant

V2018-003 (H.C.H.), and Gabrielle’s Angel Foundation for Cancer Research (H.C.H.).

Author Contributions
E.A.S. and H.C.H. wrote and edited the manuscript.
422 Trends in Cancer, July 2019, Vol. 5, No. 7



Trends in Cancer
Disclaimer Statement
The authors declare no competing financial interests.

Resources
ihttps://scenic.aertslab.org/
iihttp://software.broadinstitute.org/gsea/msigdb
iiihttps://saezlab.github.io/progeny/
ivhttps://umap-learn.readthedocs.io/en/latest/
References
1. Turajlic, S. et al. (2019) Resolving genetic heterogeneity in can-

cer. Nat. Rev. Genet. Published online March 27, 2019.
https://doi.org/10.1038/s41576-019-0114-6

2. Corces, M.R. et al. (2018) The chromatin accessibility
landscape of primary human cancers. Science 362,
eaav1898

3. Flavahan, W.A. et al. (2017) Epigenetic plasticity and the hall-
marks of cancer. Science 357, eaal2380

4. Messerschmidt, D.M. et al. (2014) DNA methylation dynamics
during epigenetic reprogramming in the germline and preim-
plantation embryos. Genes Dev. 28, 812–828

5. Ang, Y-S. et al. (2011) Stem cells and reprogramming: break-
ing the epigenetic barrier? Trends Pharmacol. Sci. 32,
394–401

6. Hensley, C.T. et al. (2016) Metabolic heterogeneity in human
lung tumors. Cell 164, 681–694

7. Martinez, F.O. and Gordon, S. (2014) The M1 and M2 para-
digm of macrophage activation: time for reassessment.
F1000Prime Rep. 6, 13

8. Lawson, D.A. et al. (2015) Single-cell analysis reveals a stem-
cell program in human metastatic breast cancer cells. Nature
526, 131–135

9. Puram, S.V. et al. (2017) Single-cell transcriptomic analysis of
primary and metastatic tumor ecosystems in head and neck
cancer. Cell 171, 1611–1624

10. Kurland, B.F. et al. (2017) Estrogen receptor binding (18 F-FES
PET) and glycolytic activity (18 F-FDG PET) predict progres-
sion-free survival on endocrine therapy in patients with ER +
breast cancer. Clin. Cancer Res. 23, 407–415

11. Patch, A-M. et al. (2015) Whole-genome characterization of
chemoresistant ovarian cancer. Nature 521, 489–494

12. Li, Q. et al. (2018) Linking prostate cancer cell AR heterogene-
ity to distinct castration and enzalutamide responses. Nat.
Commun. 9, 3600

13. Niyongere, S. et al. (2019) Heterogeneous expression of cyto-
kines accounts for clinical diversity and refines prognostication
in CMML. Leukemia 33, 205–216

14. Somasundaram, R. et al. (2017) Tumor-associated B-cells in-
duce tumor heterogeneity and therapy resistance. Nat.
Commun. 8, 607

15. Karaayvaz, M. et al. (2018) Unravelling subclonal heterogeneity
and aggressive disease states in TNBC through single-cell
RNA-seq. Nat. Commun. 9, 3588

16. Bocci, F. et al. (2019) Toward understanding cancer stem cell
heterogeneity in the tumor microenvironment. Proc. Natl.
Acad. Sci. U. S. A. 116, 148–157

17. McGranahan, N. et al. (2016) Clonal neoantigens elicit T cell im-
munoreactivity and sensitivity to immune checkpoint blockade.
Science 351, 1463–1469

18. Stevanović, S. et al. (2017) Landscape of immunogenic tumor
antigens in successful immunotherapy of virally induced epithe-
lial cancer. Science 356, 200–205

19. Rosenthal, R. et al. (2019) Neoantigen-directed immune es-
cape in lung cancer evolution. Nature 567, 479–485

20. Li, S. et al. (2013) Endocrine-therapy-resistant ESR1 variants
revealed by genomic characterization of breast-cancer-derived
xenografts. Cell Rep. 4, 1116–1130

21. Birsoy, K. et al. (2013) MCT1-mediated transport of a toxic
molecule is an effective strategy for targeting glycolytic tumors.
Nat. Genet. 45, 104–108

22. Camarda, R. et al. (2016) Inhibition of fatty acid oxidation as a
therapy for MYC-overexpressing triple-negative breast cancer.
Nat. Med. 22, 427–432

23. Bader, D.A. et al. (2018) Mitochondrial pyruvate import is a
metabolic vulnerability in androgen receptor-driven prostate
cancer. Nat. Metab. 1, 70–85

24. Gerlinger, M. et al. (2012) Intratumor heterogeneity and
branched evolution revealed by multiregion sequencing.
N. Engl. J. Med. 366, 883–892

25. Jamal-Hanjani, M. et al. (2017) Tracking the evolution of non-
small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121

26. Williams, M.J. et al. (2018) Quantification of subclonal selection
in cancer from bulk sequencing data. Nat. Genet. 50, 895–903

27. Caswell-Jin, J.L. et al. (2019) Clonal replacement and hetero-
geneity in breast tumors treated with neoadjuvant HER2-
targeted therapy. Nat. Commun. 10, 657

28. Russnes, H.G. et al. (2017) Breast cancer molecular stratifica-
tion: from intrinsic subtypes to integrative clusters. Am.
J. Pathol. 187, 2152–2162

29. Nik-Zainal, S. et al. (2016) Landscape of somatic mutations in
560 breast cancer whole-genome sequences. Nature 534,
47–54

30. Curtis, C. et al. (2012) The genomic and transcriptomic
architecture of 2,000 breast tumours reveals novel subgroups.
Nature 486, 346–352

31. Koboldt, D.C. et al. (2012) Comprehensive molecular portraits
of human breast tumours. Nature 490, 61–70

32. Brennan, C.W. et al. (2013) The somatic genomic landscape of
glioblastoma. Cell 155, 462–477

33. Hodges, C. et al. (2016) The many roles of BAF (mSWI/SNF)
and PBAF complexes in cancer. Cold Spring Harb. Perspect.
Med. 6, 1–34

34. Hodges, H.C. et al. (2018) Dominant-negative SMARCA4 mu-
tants alter the accessibility landscape of tissue-unrestricted en-
hancers. Nat. Struct. Mol. Biol. 25, 61–72

35. Stanton, B.Z. et al. (2017) Smarca4 ATPase mutations disrupt
direct eviction of PRC1 from chromatin. Nat. Genet. 49,
282–288

36. Macosko, E.Z. et al. (2015) Highly parallel genome-wide ex-
pression profiling of individual cells using nanoliter droplets.
Cell 161, 1202–1214

37. Levitin, H.M. et al. (2018) Single-cell transcriptomic analysis of
tumor heterogeneity. Trends Cancer 4, 264–268

38. Navin, N.E. (2015) The first five years of single-cell cancer ge-
nomics and beyond. Genome Res. 25, 1499–1507

39. Rosenberg, A.B. et al. (2018) Single-cell profiling of the devel-
oping mouse brain and spinal cord with split-pool barcoding.
Science 360, 176–182

40. Cusanovich, D.A. et al. (2018) The cis-regulatory dynamics of
embryonic development at single-cell resolution. Nature 555,
538–542

41. Zheng, C. et al. (2017) Landscape of infiltrating T cells in liver
cancer revealed by single-cell sequencing. Cell 169,
1342–1356

42. Li, H. et al. (2017) Reference component analysis of single-cell
transcriptomes elucidates cellular heterogeneity in human colo-
rectal tumors. Nat. Genet. 49, 708–718

43. Bartoschek, M. et al. (2018) Spatially and functionally distinct
subclasses of breast cancer-associated fibroblasts revealed
by single cell RNA sequencing. Nat. Commun. 9, 5150
Trends in Cancer, July 2019, Vol. 5, No. 7 423

https://scenic.aertslab.org/
http://software.broadinstitute.org/gsea/msigdb
https://saezlab.github.io/progeny/
https://umap-learn.readthedocs.io/en/latest/
https://doi.org/10.1038/s41576-019-0114-6
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0010
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0010
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0010
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0015
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0015
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0020
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0020
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0020
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0025
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0025
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0025
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0030
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0030
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0035
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0035
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0035
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0040
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0040
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0040
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0045
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0045
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0045
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0050
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0050
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0050
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0050
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0055
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0055
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0060
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0060
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0060
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0065
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0065
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0065
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0070
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0070
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0070
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0075
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0075
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0075
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0080
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0080
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0080
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0085
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0085
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0085
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0090
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0090
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0090
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0095
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0095
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0100
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0100
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0100
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0105
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0105
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0105
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0110
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0110
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0110
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0115
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0115
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0115
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0120
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0120
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0120
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0125
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0125
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0130
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0130
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0135
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0135
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0135
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0140
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0140
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0140
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0145
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0145
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0145
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0150
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0150
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0150
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0155
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0155
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0160
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0160
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0165
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0165
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0165
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0170
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0170
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0170
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0175
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0175
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0175
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0180
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0180
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0180
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0185
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0185
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0190
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0190
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0195
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0195
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0195
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0200
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0200
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0200
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0205
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0205
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0205
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0210
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0210
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0210
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0215
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0215
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0215


Trends in Cancer
44. Jahani-Asl, A. et al. (2016) Control of glioblastoma tumorigen-
esis by feed-forward cytokine signaling. Nat. Neurosci. 19,
798–806

45. Costa, A. et al. (2018) Fibroblast heterogeneity and immuno-
suppressive environment in human breast cancer. Cancer
Cell 33, 463–479

46. Stamatelos, S.K. et al. (2019) Tumor ensemble-based model-
ing and visualization of emergent angiogenic heterogeneity in
breast cancer. Sci. Rep. 9, 5276

47. Buenrostro, J.D. et al. (2015) Single-cell chromatin accessibility
reveals principles of regulatory variation. Nature 523, 486–490

48. Cusanovich, D.A. et al. (2015) Multiplex single-cell profiling of
chromatin accessibility by combinatorial cellular indexing. Sci-
ence 348, 910–914

49. Hainer, S.J. et al. (2019) Profiling of pluripotency factors in sin-
gle cells and early embryos. Cell 177, 1319–1329

50. Ku, W.L. et al. (2019) Single-cell chromatin immunocleavage
sequencing (scChIC-seq) to profile histone modification. Nat.
Methods 16, 323–325

51. Kumar, M.P. et al. (2018) Analysis of single-cell RNA-seq iden-
tifies cell-cell communication associated with tumor character-
istics. Cell Rep. 25, 1458–1468

52. Aibar, S. et al. (2017) SCENIC: single-cell regulatory network
inference and clustering. Nat. Methods 14, 1083–1086

53. Liberzon, A. et al. (2015) The Molecular Signatures Database
(MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425

54. Schubert, M. et al. (2018) Perturbation-response genes reveal
signaling footprints in cancer gene expression. Nat. Commun.
9, 20

55. Venteicher, A.S. et al. (2017) Decoupling genetics, lineages,
and microenvironment in IDH-mutant gliomas by single-cell
RNA-seq. Science 355, eaai8478

56. Binnewies, M. et al. (2018) Understanding the tumor immune
microenvironment (TIME) for effective therapy. Nat. Med. 24,
541–550

57. Becht, E. et al. (2018) Dimensionality reduction for visualizing
single-cell data using UMAP. Nat. Biotechnol. 37, 38–47

58. Oshimori, N. et al. (2015) TGF-β promotes heterogeneity and
drug resistance in squamous cell carcinoma. Cell 160,
963–976

59. Tammela, T. et al. (2017) A Wnt-producing niche drives prolif-
erative potential and progression in lung adenocarcinoma. Na-
ture 545, 355–359

60. Nickel, A. et al. (2018) Adipocytes induce distinct gene expres-
sion profiles in mammary tumor cells and enhance inflamma-
tory signaling in invasive breast cancer cells. Sci. Rep. 8, 9482

61. Milotti, E. et al. (2017) Pulsation-limited oxygen diffusion in the
tumour microenvironment. Sci. Rep. 7, 39762

62. Nakazawa, M.S. et al. (2016) Oxygen availability and metabolic
adaptations. Nat. Rev. Cancer 16, 663–673

63. Carmona-Fontaine, C. et al. (2017) Metabolic origins of spatial
organization in the tumor microenvironment. Proc. Natl. Acad.
Sci. U. S. A. 114, 2934–2939

64. Boutros, P.C. et al. (2015) Spatial genomic heterogeneity within
localized, multifocal prostate cancer. Nat. Genet. 47, 736–745

65. Miller, C.A. et al. (2016) Aromatase inhibition remodels the
clonal architecture of estrogen-receptor-positive breast can-
cers. Nat. Commun. 7, 12498

66. Morrissy, A.S. et al. (2017) Spatial heterogeneity in medullo-
blastoma. Nat. Genet. 49, 780–788

67. Turajlic, S. et al. (2018) Tracking cancer evolution reveals
constrained routes to metastases: TRACERx renal. Cell 173,
581–594

68. Gerlinger, M. et al. (2014) Genomic architecture and evolution
of clear cell renal cell carcinomas defined by multiregion se-
quencing. Nat. Genet. 46, 225–233

69. Sottoriva, A. et al. (2015) A big bang model of human colorectal
tumor growth. Nat. Genet. 47, 209–216

70. Litzenburger, U.M. et al. (2017) Single-cell epigenomic variability
reveals functional cancer heterogeneity. Genome Biol. 18, 15

71. Spitzer, M.H. and Nolan, G.P. (2016) Mass cytometry: single
cells, many features. Cell 165, 780–791

72. Gonzalez, V.D. et al. (2018) Commonly occurring cell subsets
in high-grade serous ovarian tumors identified by single-cell
mass cytometry. Cell Rep. 22, 1875–1888

73. Frei, A.P. et al. (2016) Highly multiplexed simultaneous detec-
tion of RNAs and proteins in single cells. Nat. Methods 13,
269–275

74. Lavin, Y. et al. (2017) Innate immune landscape in early lung
adenocarcinoma by paired single-cell analyses. Cell 169,
750–765

75. Medaglia, C. et al. (2017) Spatial reconstruction of immune
niches by combining photoactivatable reporters and scRNA-
seq. Science 358, 1622–1626

76. Giesen, C. et al. (2014) Highly multiplexed imaging of tumor tis-
sues with subcellular resolution by mass cytometry. Nat.
Methods 11, 417–422

77. Espina, V. et al. (2006) Laser-capture microdissection. Nat.
Protoc. 1, 586–603

78. Casasent, A.K. et al. (2018) Multiclonal invasion in breast tu-
mors identified by topographic single cell sequencing. Cell
172, 205–217

79. Brasko, C. et al. (2018) Intelligent image-based in situ single-
cell isolation. Nat. Commun. 9, 226

80. Ganguli, A. et al. (2018) Pixelated spatial gene expression anal-
ysis from tissue. Nat. Commun. 9, 202

81. Ståhl, P.L. et al. (2016) Visualization and analysis of gene ex-
pression in tissue sections by spatial transcriptomics. Science
353, 78–82

82. Jemt, A. et al. (2016) An automated approach to prepare
tissue-derived spatially barcoded RNA-sequencing libraries.
Sci. Rep. 6, 37137

83. Rodriques, S.G. et al. (2019) Slide-seq: a scalable technology
for measuring genome-wide expression at high spatial resolu-
tion. Science 363, 1463–1467

84. Moffitt, J.R. et al. (2018) Molecular, spatial, and functional
single-cell profiling of the hypothalamic preoptic region. Sci-
ence 362, eaau5324

85. Wang, G. et al. (2018) Multiplexed imaging of high-density li-
braries of RNAs with MERFISH and expansion microscopy.
Sci. Rep. 8, 4847

86. Eng, C.-H.L. et al. (2019) Transcriptome-scale super-resolved
imaging in tissues by RNA seqFISH. Nature 568, 235–239

87. Lee, J.H. et al. (2014) Highly multiplexed subcellular RNA se-
quencing in situ. Science 343, 1360–1363

88. Ly, A. et al. (2016) High-mass-resolution MALDI mass spec-
trometry imaging of metabolites from formalin-fixed paraffin-
embedded tissue. Nat. Protoc. 11, 1428–1443

89. Dilillo, M. et al. (2017) Ultra-high mass resolution MALDI imag-
ing mass spectrometry of proteins and metabolites in a mouse
model of glioblastoma. Sci. Rep. 7, 603

90. Spraggins, J.M. et al. (2016) Next-generation technologies for
spatial proteomics: integrating ultra-high speed MALDI-TOF
and high mass resolution MALDI FTICR imaging mass spec-
trometry for protein analysis. Proteomics 16, 1678–1689

91. Miller, A. et al. (2017) Exploring metabolic configurations of sin-
gle cells within complex tissue microenvironments. Cell Metab.
26, 788–800

92. Gerdes, M.J. et al. (2013) Highly multiplexed single-cell analysis
of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl.
Acad. Sci. U. S. A. 110, 11982–11987

93. Lin, J-R. et al. (2015) Highly multiplexed imaging of single cells
using a high-throughput cyclic immunofluorescence method.
Nat. Commun. 6, 8390

94. Lin, J-R. et al. (2018) Highly multiplexed immunofluorescence
imaging of human tissues and tumors using t-CyCIF and con-
ventional optical microscopes. eLife 7, 8390

95. Cermakova, K. and Hodges, H.C. (2018) Next-generation
drugs and probes for chromatin biology: From targeted protein
degradation to phase separation. Molecules 23, E1958

96. Danhier, P. et al. (2015) Combining optical reporter proteins
with different half-lives to detect temporal evolution of hypoxia
and reoxygenation in tumors. Neoplasia 17, 871–881

97. Zhang, Y. and Chen, L. (2016) Classification of advanced
human cancers based on tumor immunity in the microenviron-
ment (TIME) for cancer immunotherapy. JAMA Oncol. 2,
1403–1404

98. Genovese, G. et al. (2017) Synthetic vulnerabilities of mesen-
chymal subpopulations in pancreatic cancer. Nature 542,
362–366
424 Trends in Cancer, July 2019, Vol. 5, No. 7

http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0220
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0220
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0220
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0225
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0225
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0225
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0230
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0230
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0230
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0235
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0235
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0240
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0240
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0240
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0245
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0245
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0250
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0250
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0250
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0255
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0255
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0255
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0260
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0260
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0265
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0265
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0270
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0270
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0270
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0275
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0275
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0275
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0280
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0280
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0280
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0285
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0285
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0290
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0290
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0290
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0295
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0295
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0295
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0300
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0300
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0300
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0305
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0305
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0310
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0310
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0315
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0315
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0315
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0320
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0320
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0325
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0325
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0325
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0330
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0330
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0335
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0335
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0335
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0340
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0340
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0340
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0345
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0345
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0350
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0350
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0355
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0355
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0360
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0360
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0360
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0365
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0365
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0365
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0370
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0370
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0370
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0375
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0375
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0375
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0380
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0380
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0380
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0385
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0385
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0390
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0390
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0390
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0395
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0395
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0400
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0400
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0405
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0405
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0405
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0410
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0410
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0410
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0415
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0415
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0415
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0420
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0420
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0420
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0425
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0425
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0425
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0430
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0430
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0435
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0435
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0440
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0440
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0440
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0445
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0445
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0445
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0450
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0450
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0450
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0450
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0455
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0455
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0455
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0460
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0460
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0460
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0465
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0465
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0465
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0470
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0470
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0470
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0475
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0475
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0475
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0480
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0480
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0480
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0485
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0485
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0485
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0485
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0490
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0490
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0490


Trends in Cancer
99. Liu, T. et al. (2018) Observing the cell in its native state: imaging
subcellular dynamics in multicellular organisms. Science 360,
eaaq1392

100. Kubota, S.I. et al. (2017) Whole-body profiling of cancer metas-
tasis with single-cell resolution. Cell Rep. 20, 236–250

101. Tran, E. et al. (2014) Cancer immunotherapy based on
mutation-specific CD4+ T cells in a patient with epithelial can-
cer. Science 344, 641–645

102. Van Allen, E.M. et al. (2015) Genomic correlates of response to
CTLA-4 blockade in metastatic melanoma. Science 350,
207–211

103. Tran, E. et al. (2015) Immunogenicity of somatic mutations in
human gastrointestinal cancers. Science 350, 1387–1390

104. Rizvi, N.A. et al. (2015) Cancer immunology. Mutational land-
scape determines sensitivity to PD-1 blockade in non-small
cell lung cancer. Science 348, 124–128

105. Ribas, A. and Wolchok, J.D. (2018) Cancer immunotherapy
using checkpoint blockade. Science 359, 1350–1355

106. Linde, N. et al. (2018) Macrophages orchestrate breast cancer
early dissemination and metastasis. Nat. Commun. 9, 21

107. Su, S. et al. (2014) A positive feedback loop between
mesenchymal-like cancer cells and macrophages is essential
to breast cancer metastasis. Cancer Cell 25, 605–620

108. Celus, W. et al. (2017) Loss of caveolin-1 in metastasis-associ-
ated macrophages drives lung metastatic growth through in-
creased angiogenesis. Cell Rep. 21, 2842–2854
Trends in Cancer, July 2019, Vol. 5, No. 7 425

http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0495
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0495
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0495
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0500
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0500
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0505
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0505
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0505
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0505
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0510
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0510
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0510
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0515
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0515
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0520
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0520
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0520
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0525
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0525
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0530
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0530
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0535
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0535
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0535
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0540
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0540
http://refhub.elsevier.com/S2405-8033(19)30101-3/rf0540

	The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-�Cell Technologies
	Tumor Heterogeneity and Cell Plasticity
	The Hierarchy of Tumor Heterogeneity
	Visualizing Tumor Heterogeneity through Single-Cell Technologies
	The Spatial Hierarchy of Tumor Heterogeneity
	Technologies for Characterizing Multicellular Features in Malignancy
	Advancements in Cell Sorting and Cytometry
	Laser-Capture Microdissection
	Advanced Methods That Combine Genomics with High Spatial Resolution
	Single-Cell Resolution of Protein/Metabolite Abundance

	Concluding Remarks
	Acknowledgments
	Author Contributions
	Disclaimer Statement
	Resources
	References


